Answer:
The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Explanation:
Given that,
Amplitude = 0.08190 m
Frequency = 2.29 Hz
Wavelength = 1.87 m
(a). We need to calculate the shortest transverse distance between a maximum and a minimum of the wave
Using formula of distance

Where, d = distance
A = amplitude
Put the value into the formula


Hence, The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
the answer is A. The aluminum has 0.84 ohms more resistance.
Answer:
=24.25 ^−1
Explanation:
Let and be initial and final velocity of the body respectively,
be acceleration due to gravity ( 9.8^−2 ), ℎ be the height of the body.
=0 ^ −1
ℎ=30
we know that, ^2−^ 2=2ℎ
^2=2∗9.8∗30
^2=588
=24.25 ^−1
Answer:
i think answer should be C
Answer:
Atomic radius decreases moving from left to right across a period.
Explanation:
When we move left to right across a period, the size of atoms generally decreases. It is because within the period the outer electrons are in same valence shell and the number of electrons and proton increases moving from left to right across the the period. It increases the effective nuclear charge resulting in the increased attraction of electron to the nucleus that causes the decreased radius of the atoms.