Answer:
2.2nC
Explanation:
Call the amount by which the spring’s unstretched length L,
the amount it stretches while hanging x1
and the amount it stretches while on the table x2.
Combining Hooke’s law with Newton’s second law, given that the stretched spring is not accelerating,
we have mg−kx1 =0, or k = mg /x1 , where k is the spring constant. On the other hand,
applying Coulomb’s law to the second part tells us ke q2/ (L+x2)2 − kx2 = 0 or q2 = kx2(L+x2)2/ke,
where ke is the Coulomb constant. Combining these,
we get q = √(mgx2(L+x2)²/x1ke =2.2nC
Energy- the ability to do work/how things can change and move
Types
Potential Energy
Kinetic Energy
Nuclear Energy
Mechanical Energy
Sound Energy
Heat
Answer:
-20000 kgm/s
Explanation:
Impulse: This can be defined as the product of the mass of a body and its change in velocity. The S.I unit of impulse is kgm/s.
Mathematically, impulse can be expressed as
I = m(v-u).............. Equation 1.
Where I = impulse applied to the car to bring it to rest, m = mass of the car, u = initial velocity of the car, v = final velocity of the car.
Given: m = 1000 kg, u = 20 m/s, v = 0 m/s ( to rest)
Substitute into equation 1
I = 100(0-20)
I = 1000(-20)
I = -20000 kgm/s
Hence the impulse applied to the car to bring it to rest = -20000 kgm/s
B.
technically it would depend if the resistors were in series or parallel but B is the answer.