Answer:
the energy difference between adjacent levels decreases as the quantum number increases
Explanation:
The energy levels of the hydrogen atom are given by the following formula:

where
is a constant
n is the level number
We can write therefore the energy difference between adjacent levels as

We see that this difference decreases as the level number (n) increases. For example, the difference between the levels n=1 and n=2 is

While the difference between the levels n=2 and n=3 is

And so on.
So, the energy difference between adjacent levels decreases as the quantum number increases.
Yes!
I think there are two ways you could go with this answer:
1) Acceleration is the change in velocity over time, it can be negative or positive. If you have an object that is already moving forwards in a straight line and give it a constant negative acceleration, it will slow down and then start going in reverse.
2)Velocity is a vector, meaning it has both magnitude and direction. In the example above, the acceleration is due to a change in magnitude, or speed (from +ve to -ve) but not a change in direction. Something that has constant speed but is changing direction is also accelerating (like something that is orbiting). You could use the earth as an example, which is constantly accelerating due to moving in a circle around the sun. At any time in the year you can say that in half a year's time the earth's direction will be reversed.
Answer:
Use Fc centripetal force as positive and W the weight as negative
N = m v^2 / R + m g
v^2 = (N - m g) R / m
v^2 = (995 - 57 * 9.8) 42.7 / 57 = 327 m^2/s^2
v = 18.1 m/s
Note: N - m g is the net force producing the centripetal force