Answer:
<em>a) 0.72 V</em>
<em>b) 19.2 mA</em>
<em>c) 2.304 Watts</em>
Explanation:
A transformer is used to step-up or step-down voltage and current. It uses the principle of electromagnetic induction. When the primary coil is greater than the secondary coil, the it is a step-down transformer, and when the primary coil is less than the secondary coil, the it is a step-up transformer.
number of primary turns =
= 500 turns
input voltage =
= 120 V
number of secondary turns =
= 3 turns
output voltage =
= ?
using the equation for a transformer

substituting values, we have


= 360/500 =<em> 0.72 V</em>
<em></em>
b) by law of energy conservation,

where
= input current = ?
= output voltage = 3.2 A
= output voltage = 0.72 V
= input voltage = 120 V
substituting values, we have
120
= 3.2 x 0.72
120
= 2.304
= 2.304/120 = 0.0192 A
= <em>19.2 mA</em>
<em></em>
c) power input = 
==> 0.0192 x 120 = <em>2.304 Watts</em>
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
Answer:
a)
b)
Explanation:
a)
The width of the central bright in this diffraction pattern is given by:
when m is a natural number.
here:
- m is 1 (to find the central bright fringe)
- D is the distance from the slit to the screen
- a is the slit wide
- λ is the wavelength
So we have:
b)
Now, if we do m=2 we can find the distance to the second minima.

Now we need to subtract these distance, to get the width of the first bright fringe :
I hope it heps you!
Answer:
The answer is below
Explanation:
The length of the rope is equal to the radius of the circle formed by the complete rotation of the rope. Therefore the radius = 1.50 m.
a) The distance covered by the rope when completing one rotation is the same as the perimeter of the circle. Hence:
Distance covered in one rotation = 2π * radius = 2π * 1.5 = 3π meters
The velocity of the ball = Distance / time = 3π meters / 3.4 seconds = 2.77 m/s
b) The initial velocity (u) is 0 m/s, the final velocity is 2.77 m/s during time (t) = 3.4 s. Hence acceleration (a):
v = u + at
2.77 = 3.4a
a = 0.82 m/s²
c) Force on ball = mass * acceleration = 4 * 0.82 = 3.28 N