<span>if we assume the origin is at the dropping point and the object is merely dropped and not thrown up or down then y0 = 0 and v0 = 0. The equation reduces to </span>
<span>y = 0 + 0t + ½gt² </span>
<span>y = ½gt² </span>
<span>t = √(2y/g) </span>
<span>in the ft - lb - s system </span>
<span>y = -100 ft </span>
<span>g = -32.2 ft / s² </span>
<span>t = √(2y/g) </span>
<span>t = √(2(-100) / (-32.2)) </span>
<span>t = 2.5 s</span>
Answer: 40.84 m
Explanation:
Given
Radius of the disk, r = 2m
Velocity of the disk, v = 7 rad/s
Acceleration of the disk, α = 0.3 rad/s²
Here, we use the formula for kinematics of rotational motion to solve
2α(θ - θ•) = ω² - ω•²
Where,
ω• = 0
ω = v/r = 7/2
ω = 3.5 rad/s
2 * 0.3(θ - θ•) = 3.5² - 0
0.6(θ - θ•) = 12.25
(θ - θ•) = 12.25 / 0.6
(θ - θ•) = 20.42 rad
Since we have both the angle and it's radius, we can calculate the arc length
s = rθ = 2 * 20.42
s = 40.84 m
Thus, the needed distance is 40.84 m
If you think about the colors of the rainbow red, orange, yellow, green, blue, indigo, and violet. That list of colors shows you the spectrum of visible light and the further right (towards violet) you go the more energy the waves have while the more left (towards red) you go the less energy the waves have. wavelength and energy are inversely proportional meaning that as energy goes up, wavelength goes down. therefore the more right (towards violet) you move in the spectrum, the smaller the wavelengths get.