1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arte-miy333 [17]
3 years ago
13

Rests represent periods of __________ in a measure.

Engineering
1 answer:
DaniilM [7]3 years ago
8 0

Answer:

Rests represent periods of <em><u>silence</u></em> in a measure.

Explanation:

Hope this Helps!!!

You might be interested in
Which branch of engineering most closely relates to mechanical engineering?
Rus_ich [418]

Answer:

C

Explanation:

I COULD be wrong, i'm not sure but im confident its c

4 0
3 years ago
Tech A says that in some cases, the electronic brake control module can be programmed with a new tire size to restore proper ele
Vlad [161]

Answer:

Both Techs A and B

Explanation:

Electronic braking systems are controlled by the electronic brake control module. It is a microprocessor that processes information from wheel-speed sensors and the hydraulic brake system to determine when to release braking pressure at a wheel that's about to lock up and start skidding  and activates the anti lock braking system or traction system when it detects it is necessary.

Some electronic brake control modules can be programmed to the size of the vehicle's new tires to restore proper electronic brake control performance. While others may require replacing the module to match the module's programming to the installed tire size. So, both technicians A and B are correct.

3 0
3 years ago
1.0•10^-10 standard form
Drupady [299]

Answer:

1.0 * 10^{-10} = 0.0000000001

Explanation:

Given

1.0 * 10^{-10}

Required

Convert to standard form

1.0 * 10^{-10}

From laws of indices

a^{-x} = \frac{1}{a^x}

So, 1.0 * 10^{-10} is equivalent to

1.0 * 10^{-10} = 1.0 * \frac{1}{10^{10}}

1.0 * 10^{-10} = 1.0 * \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}

1.0 * 10^{-10} = 1.0 * \frac{1}{10000000000}

1.0 * 10^{-10} = 1.0 * 0.0000000001

1.0 * 10^{-10} = 0.0000000001

Hence, the standard form of 1.0 * 10^{-10} is 0.0000000001

3 0
2 years ago
What are the factors that influence the power input to the compressor?
Lena [83]

Answer:

option e is correct answer

5 0
2 years ago
A counter-flow double-piped heat exchange is to heat water from 20oC to 80oC at a rate of 1.2 kg/s. The heating is to be accompl
lawyer [7]

Answer:

110 m or 11,000 cm

Explanation:

  • let mass flow rate for cold and hot fluid = M<em>c</em> and M<em>h</em> respectively
  • let specific heat for cold and hot fluid = C<em>pc</em> and C<em>ph </em>respectively
  • let heat capacity rate for cold and hot fluid = C<em>c</em> and C<em>h </em>respectively

M<em>c</em> = 1.2 kg/s and M<em>h = </em>2 kg/s

C<em>pc</em> = 4.18 kj/kg °c and C<em>ph</em> = 4.31 kj/kg °c

<u>Using effectiveness-NUT method</u>

  1. <em>First, we need to determine heat capacity rate for cold and hot fluid, and determine the dimensionless heat capacity rate</em>

C<em>c</em> = M<em>c</em> × C<em>pc</em> = 1.2 kg/s  × 4.18 kj/kg °c = 5.016 kW/°c

C<em>h = </em>M<em>h</em> × C<em>ph </em>= 2 kg/s  × 4.31 kj/kg °c = 8.62 kW/°c

From the result above cold fluid heat capacity rate is smaller

Dimensionless heat capacity rate, C = minimum capacity/maximum capacity

C= C<em>min</em>/C<em>max</em>

C = 5.016/8.62 = 0.582

          .<em>2 Second, we determine the maximum heat transfer rate, Qmax</em>

Q<em>max</em> = C<em>min </em>(Inlet Temp. of hot fluid - Inlet Temp. of cold fluid)

Q<em>max</em> = (5.016 kW/°c)(160 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(140) °c = 702.24 kW

          .<em>3 Third, we determine the actual heat transfer rate, Q</em>

Q = C<em>min (</em>outlet Temp. of cold fluid - inlet Temp. of cold fluid)

Q = (5.016 kW/°c)(80 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(60) °c = 303.66 kW

            .<em>4 Fourth, we determine Effectiveness of the heat exchanger, </em>ε

ε<em> </em>= Q/Qmax

ε <em>= </em>303.66 kW/702.24 kW

ε = 0.432

           .<em>5 Fifth, using appropriate  effective relation for double pipe counter flow to determine NTU for the heat exchanger</em>

NTU = \\ \frac{1}{C-1} ln(\frac{ε-1}{εc -1} )

NTU = \frac{1}{0.582-1} ln(\frac{0.432 -1}{0.432 X 0.582   -1} )

NTU = 0.661

          <em>.6 sixth, we determine Heat Exchanger surface area, As</em>

From the question, the overall heat transfer coefficient U = 640 W/m²

As = \frac{NTU C{min} }{U}

As = \frac{0.661 x 5016 W. °c }{640 W/m²}

As = 5.18 m²

            <em>.7 Finally, we determine the length of the heat exchanger, L</em>

L = \frac{As}{\pi D}

L = \frac{5.18 m² }{\pi (0.015 m)}

L= 109.91 m

L ≅ 110 m = 11,000 cm

3 0
3 years ago
Other questions:
  • Once a design is final engineer needs a plan for product
    14·1 answer
  • What would be the most likely scale factor to use for an n-gauge model train setup? (An n-gauge layout uses locomotives that are
    8·1 answer
  • Carbon resistors often come as a brown cylinder with colored bands. These colored bands can be read to determine the manufacture
    7·1 answer
  • If you play roblox leave user down bellow
    14·2 answers
  • n open feedwater heater operates at steady state with liquid water entering inlet 1 at 10 bar, 50°C. A separate stream of steam
    8·1 answer
  • Which actions would the maintenance and operations crews carry out as a building is completed and preparing to open to the publi
    8·2 answers
  • Chandler is working on a school editing project. Because he copied 10 GB of raw footage to his computer, its memory is running l
    11·1 answer
  • Thermodynamics fill in the blanks The swimming pool at the local YMCA holds roughly 749511.5 L (749511.5 kg) of water and is kep
    6·1 answer
  • Code for XOR with two input logic gate
    8·1 answer
  • A machine has an efficiency of 15%. If the energy input is 300 joules, how much useful energy is generated?(1 point).
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!