I think it's B. Molecules collide more frequently
From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
A human body, just like a dog's, will sweat. Dogs will pants and sweat through the pads of their feet to cool down, and human will sweat through their foreheads, armpits, etc.
Dogs will tend to, in hot environments, lay on the floor or where the surface is cooler. Since they cannot simply strip their clothing to keep cool they tend to find cool surfaces, fans, sources of air, etc. to keep cool from the heat.
A circuit with many paths for the current to travel through and not simply one is classified as a parallel circuit. Here the circuit can have many loops of resistors or light bulbs that can be attached.
Answer:
The energy released as heat when 9.94 g Cu 2 O ( s ) undergo oxidation at constant pressure is -10.142 kJ
Explanation:
Here we have
2Cu₂O ( s ) + O₂ ( g ) ⟶ 4 CuO ( s ) Δ H ∘ rxn = − 292.0 kJ mol
In the above reaction, 2 Moles of Cu₂O (copper (I) oxide) react with one mole of O₂ to produce 4 moles of CuO, with the release of − 292.0 kJ/mol of energy
Therefore,
1 Moles of Cu₂O (copper (I) oxide) react with 0.5 mole of O₂ to produce 2 moles of CuO, with the release of − 146.0 kJ of energy
We have 9.94 g of Cu₂O with molar mass given as 143.09 g/mol
Hence the number of moles in 9.94 g of Cu₂O is given as
9.94/143.09 = 6.95 × 10⁻² moles of Cu₂O
6.95 × 10⁻² moles of Cu₂O will therefore produce 6.95 × 10⁻² × − 146.0 kJ mol or -10.142 kJ.