1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kupik [55]
3 years ago
6

A parallel-plate capacitor consists of plates of area 1.5 x 10^-4 m^2 separated by 2.0 mm The capacitor is connected to a 12-V b

attery. How much energy is stored in the capacitor? (a) 4.8 x 10^-11 J (b) 2.8 X 10^-11 J (c) 1.8 x 10^-11 J d) 4.8 X 10^-12 J
Physics
1 answer:
Katen [24]3 years ago
4 0

Answer:

4.78 x 10^-11 J

Explanation:

A = 1.5 x 10^-4 m^2

d = 2 mm = 2 x 10^-3 m

V = 12 V

Let C be the capacitance of the capacitor

C = ε0 A / d

C = (8.854 x 10^-12 x 1.5 x 10^-4) / (2 x 10^-3)

C = 6.64 x 10^-13 F

Energy stored, U = 1/2 CV^2

U = 0.5 x 6.64 x 10^-13 x 12 x 12

U = 4.78 x 10^-11 J

You might be interested in
An insulated pipe carries steam at 300°C. The pipe is made of stainless steel (with k = 15 W/mK), has an inner diameter is 4 cm,
insens350 [35]

Answer:

The answers to the question are

(i) The rate of heat loss per-unit-length (W/m) from the pipe is 131.62 W

(ii) The temperature of the outer surface of the insulation is 49.89 °C

Explanation:

To solve the question, we note that the heat transferred is given by

Q = \frac{2\pi L(t_{hf} - t_{cf}) }{\frac{1}{h_{hf}r_1}+\frac{ln(r_2/r_1)}{k_A} + \frac{ln(r_3/r_2)}{k_B} +\frac{1}{h_{cf}r_3}}

Where

t_{hf} = Temperature at the inside of the pipe = 300 °C

t_{f} = Temperature at the outside of the pipe = 20 °C

r₁ =internal  radius of pipe = 4.0 cm

r₂ = Outer radius of pipe = 4.5 cm

r₃ = Outer radius of the insulation = r₂ + 2.5 = 7.0 cm

k_A = 15 W/m·K

k_B = 0.038 W/m·K

h_{hf} = 75 W/m²·K

h_{cf} = 10 W/m²·K

Plugging in the values in the above equation where for a unit length L = 1 m, we have

Q = 131.32 W

From which we have, for the film of air at the pipe outer boundary layer

Q = \frac{t_A-t_B}{R_T} Where R_T for the air film on the pipe outer surface is given by

R_T= \frac{1}{\alpha A}

where A =area of the outside of the pipe

= \frac{1}{10*2\pi*0.07*1 } = 0.227 K/W

Therefore

131.32 W = \frac{t_A-20}{0.227} which gives

t_A = 49.89 °C

Heat transferred by radiation = q' = ε×σ×(T₁⁴ - T₂⁴)

Where ε = 0.9, σ, = 5.67×10⁻⁸W/m²·(K⁴)

T₁ = Surface temperature of the pipe = 49.89 °C and

T₂ = Temperature of the surrounding = 20.00 °C

Plugging in the values gives, q' = 0.307 W per m²

Total heat lost per unit length = 131.32 + 0.307 =131.62 W

8 0
3 years ago
Explain why a Chef in a very busy restaurant would prefer a copper pot over an aluminum pot. A) The copper pot would heat faster
stellarik [79]
A would be the answer 
5 0
2 years ago
Read 2 more answers
Got an F in Physical Science. HELP ME PLZZZ
Dmitriy789 [7]

i know can you plzz help me with this question im sorry i didt answer your question i just need hel.

7 0
3 years ago
A thin spherical shell of radius R has a total charge +Q uniformly distributed over its surface. Of the following distance r fro
grigory [225]

Answer:

The correct answer is B

Explanation:

Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity

         Φ._{E} = ∫ E. dA = q_{int} / ε₀

For this case we create a Gaussian surface that is a sphere.  We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product

        ∫ E dA = q_{int} / ε₀

The area of ​​a sphere is

     A = 4π r²

   

    E 4π r² =q_{int} / ε₀

    E = (1 /4πε₀ )  q / r²

Having the solution of the problem let's analyze the points:

A   ) r = 3R / 4  = 0.75 R.

  In this case there is no charge inside the Gaussian surface therefore the electric field is zero

        E = 0

B) r = 5R / 4 = 1.25R

In this case the entire charge is inside the Gaussian surface, the field is

    E = (1 /4πε₀ )  Q / (1.25R)²

    E = (1 /4πε₀ )  Q / R2 1 / 1.56²

    E₀ = (1 /4π ε₀ )  Q / R²

   E_{B} =  Eo /1.56 ²

  E_{B}  = 0.41 Eo

C) r = 2R

All charge inside is inside the Gaussian surface

    E_{B} =(1 /4π ε₀ ) Q    1/(2R)²

    E_{B} = (1 /4π ε₀ ) q/R²   1/4

    E_{B} = Eo  1/4

    E_{B} = 0.25 Eo

D) False the field changes with distance

The correct answer is B

4 0
3 years ago
Two waves collide and the temporary combined waves that results is smaller that the original wave.
zimovet [89]
A.

Destructive interference is when two waves cancel each other out or when the crest of one wave passes through the trough of another wave.
5 0
2 years ago
Other questions:
  • _______ or radioactive substance have a half life.
    6·1 answer
  • A cell has an internal resistance of 0.02ohms and e.m.f of 2.0v calculate it's terminal p.d if it's delivers (a)5A ( b)50A​
    12·1 answer
  • A minivan is rated for maximum carrying capacity of 900 lbs. if the luggage weighs 100 lbs, what is the maximum average weight a
    11·1 answer
  • What are the public policy alternatives to hunger
    11·1 answer
  • An experiment was devised to investigate the effects on the temperature of a cup of coffee when cream is added at different time
    11·2 answers
  • In the diagram, the arrow shows the movement of electric
    14·1 answer
  • You have the following problems and your friend gives you suggestions .work in pairs and have true conversation .Your prounction
    5·1 answer
  • What are the limitations of sending information using electronic waves
    10·1 answer
  • Psychologists often talk of the nature-nurture controversy. Which of these
    10·2 answers
  • The Large Hadron collider (LHC) is a huge piece of equipment designed and built in order to make new scientific discoveries. The
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!