1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inn [45]
3 years ago
7

What type of energy does the box have after it is done being pulled?

Physics
1 answer:
Ksivusya [100]3 years ago
3 0
Assuming that the box is moving when it is being pulled, Work is done on the box.

So work is the Force times the distance

W=Fd

But what is work actually ? When something moves due to force over some change in distance, it have energy.

But where does this energy come from ? Does it magically appear ? The energy comes from the applied force onto the box.

So the energy have been transferred. And it’s like that throughout the universe

Now to save time, I’ll just tell you the answer: kinetic energy

:)
You might be interested in
Ideally, rewards should be given immediately and frequently but
snow_lady [41]
The correct answer for the question that is being presented above is this one: "a. only from an instructor or supervisor." Ideally, rewards should be given immediately and frequently but <span>only from an instructor or supervisor to show authority. </span>
3 0
3 years ago
irius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. Ano
Norma-Jean [14]

The actual distance of Regulus from Earth is 23.81 parsecs.

Given:

Parallax of Regulus, p = 0.042 arc seconds

Calculation:

When an observer changes their position, an apparent change in the object's position takes place. This change can be calculated using the angle ( or semi-angle) made by the observer and object i.e. the angle made between the two lines of observation from the object to the observer.

Thus from the relation of parallax of a celestial body we get:

S = 1/ tan p ≈ 1 / p

where S is the actual distance between the object and the observer

            p is the parallax angle observed

Here for Regulus, we get:

S = 1 / p

  = 1 / (0.042)                                     [ 1 parsecs = 1 arcseconds ]

  = 23.81 parsecs

We know that,

1 parsecs = 3.26 light-years = 206,000 AU

Converting the actual distance into light years we get:

23.81 parsecs = 23.81 × (3.26 light yrs) = 77.658 light-years

Therefore, the actual distance of Regulus from Earth is 23.81 parsecs which is 77.658 in light years.

Learn more about astronomical units here:

<u>brainly.com/question/16471213</u>

#SPJ4

6 0
1 year ago
The force applied when using a simple machine
jenyasd209 [6]

Answer:

effort

Explanation:

effort is the answer

7 0
3 years ago
Read 2 more answers
A long wire carrying a 5.0 A current perpendicular to the xy-plane intersects the x-axis at x= - 2.0 cm . A second, parallel wir
mario62 [17]

Answer:

a . 0.35cm

b.  11.33cm

Explanation:

a. Given both currents are in the same direction, the null point lies in between them. Let x be distance of N from first wire, then distance from 2nd wire is 4-x

#For the magnetic fields to be zero,the fields of both wires should be equal and opposite.They are only opposite in between the wires:

\frac{\mu_oi_1}{2\pi x}=\frac{\mu_oi_2}{2\pi(4-x)}\\\\5/x=\frac{3.5}{4-x}\\\\x=2.35cm\\\\N=2.35-2=0.35cm

Hence, for currents in same direction, the point is 0.35cm

b. Given both currents flow in opposite directions, the null point lies on the other side.

#For the magnetic fields to be zero,the fields of both wires should be equal and opposite.They are only opposite in outside the wires:

Let x be distance of N from first wire, then distance from 2nd wire is 4+x:

\frac{\mu_oi_1}{2\pi(4+ x)}=\frac{\mu_oi_2}{2\pi x}\\\\5/(4+x)=\frac{3.5}{x}\\\\x=9.33cm\\\\N=9.33+2=11.33cm

Hence, if currents are in opposite directions the point on x-axis is 11.33cm

8 0
3 years ago
Which equations could be used as is, or rearranged to calculate for frequency of a wave? Check all that apply.
amm1812
-- Equations  #2  and  #6  are both the same equation,
and are both correct.

-- If you divide each side by  'wavelength', you get Equation #4,
which is also correct.

-- If you divide each side by  'frequency', you get Equation #3,
which is also correct. 
With some work, you can rearrange this one and use it to calculate
frequency.

Summary:

-- Equations #2, #3, #4, and #6 are all correct statements,
and can be used to find frequency.

-- Equations #1 and #5 are incorrect statements.
7 0
3 years ago
Read 2 more answers
Other questions:
  • A change of color is a sign that a chemical reaction is taking place. true or false
    5·1 answer
  • What are balanced forces?
    15·2 answers
  • A battery with an emf of 1.50 V has an internal resistance r. When connected to a resistor R, the terminal voltage is 1.40 V and
    15·1 answer
  • You're driving down the highway late one night at 20 m/s when a deer steps onto the road 38 m in front of you. Your reaction tim
    15·1 answer
  • Which type of wave has a wave perpendicular to the disturbance
    9·1 answer
  • What is the kind of wave produced by vibrating haksaw blade?​
    11·2 answers
  • Which event is an example of melting?
    15·1 answer
  • Give reason:
    10·1 answer
  • NEEED HELP!!!
    15·1 answer
  • A father (75 kg) was standing watching TV, minding his own business when one of his kids (20 kg) approached him at 2m/s heading
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!