Answer:
L= 2 mH
Explanation:
Given that
Frequency , f= 10 kHz
Maximum current ,I = 0.1 A
Maximum energy stored ,E= 1 x 10⁻⁵ J
The maximum energy stored in the inductor is given as follows

Where ,L= Inductance
I=Current
E=Energy
Now by putting the values in the above equation


L=0.002 H
L= 2 mH
We know that frequency f is given as

C=Capacitance , f=frequency ,L=Inductance
Now by putting the values






Therefore the inductance and capacitance will be 2 mH and 1.26 x 10⁻⁷ F respectively.
Answer:
2,8
Explanation:
The first electron shell would have 2 electrons, the second shell would have 8 electrons. This is because Neon has a relative charge of 10.
1. When the object is waiting to be released, it is storing a lot of potential energy. When it is released, the potential energy that was once stored is converted into kinetic energy.
Answer:
d. conduction
Explanation:
Conduction involves the transfer of electric charge or thermal energy due to the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Any material or object that allow the conduction (transfer) of electric charge or thermal energy is generally referred to as a conductor. Conductors include metal, steel, aluminum, copper, frying pan, pot, spoon etc.
In conclusion, conduction typically involves the transfer of heat energy by direct contact between two or more conductors such as a pot and electric cooker.
1 cubic cm is the same as 1 mL, so the answer would be C.