<span>A 67.0 kg crate is being raised by means of a rope. Its upward acceleration is 3.50 m/s2. What is the force exerted by the rope on the crate?
</span>Newton's Second Law<span> of Motion states, “The force acting on an object is equal to the mass of that object times its acceleration.” We calculate as follows:
</span>
F = ma = 67.0 kg (3.50 m/s^2) = 234.5 J
Answer:beats
Explanation:l got it right gang
Answer:
Explanation:
If a baseball is hit into the air with a velocity of 27 m/s, we want to determine the maximum height of the ball. Using the projecile formula;
Max height H = u²/2g
u is the initial velocity of the body = 27m/s
g is the acceleration due to gravity = 9.81m/s²
H = 27²/2(9.81)
H = 729/19.62
H = 37.16m
Hence the ball went 37.16m high
Rutherford tested Thomson'shypothesis by devising his "gold foil" experiment. Rutherford was forced to discard the Plum Pudding modeland reasoned that the only way the alpha particles could be deflected backwards was if most of the mass in an atom was concentrated in a nucleus.
Answer:
Danny hits the water with kinetic energy of 5000 J.
Explanation:
Given that,
The Weight of Danny Diver,
F = 500 N
m*g= 500 N
He steps off a diving board 10 m above the water.
h=10 m
when Danny diver hits water he generates the kinetic energy.
We need to find the kinetic energy of the water.
Let kinetic energy is K.
K = m*g*h
Where g is acceleration due to gravity.
that g= 9.8 m/s^2
now substituting the values in above equation
K= (500) * 10
K= 5000 J
Hence,
he hits the water with kinetic energy of 5000 J.
Learn more about Kinetic energy here:
<u>brainly.com/question/15587458</u>
<u />
#SPJ4