Answer:
In an elastic collision:
- There is no external net force acting. Thus, Momentum before and after collision is equal. Momentum remains conserved.
- Total energy always remains conserved as energy cannot be created nor destroyed. It can change from one form to another.
- There is no lost due to friction in elastic collision. So the kinetic energy is also conserved.
- Velocities may change after collision. If the masses are equal, the velocities interchange.
When one object is stationary:
Final velocity of object 1:
v₁ = (m₁ - m₂)u₁/(m₁ +m₂)
Final velocity of object 2:
v₂ = (2 m₁ u₁)/(m₁+m₂) =
- Objects do not stick together in elastic collision. They stick together in inelastic collision.
- One object may be stationary before the elastic collision.
Thus, conditions for an elastic collision:
- Energy is conserved.
- Velocities may change.
- Momentum is conserved.
- Kinetic energy is conserved.
- One object may be stationary before the elastic collision.
The the Water turns to ice. But even then they would never truly stop moving.<span />
Answer:
conduction
Explanation:
conduction is a form of heat transfer whereby heat is transferred by direct contact between the heat source and the object to be heated. In the question it is stated that the pot sits directly (direct contact) on the heating coil (heat source) and the pot (object to be heated).
Answer: 
Explanation:

where;
= final velocity = 0
= initial velocity = 60 km/h = 16.67 m/s
= acceleration
= distance
First all of, because acceleration is given in m/s and not km/h, you need to convert 60km/h to m/s. Our conversion factors here are 1km = 1000m and 1h = 3600s

Solve for a;

Begin by subtracting 

Divide by 2d

Now plug in your values:



If you're wondering why I calculated acceleration first is because in order to find force, we need 2 things: mass and acceleration.

m = mass = 900kg
a = acceleration = -2.78m/s

It's negative because the force has to be applied in the opposite direction that the car is moving.