Answer:
Explanation:
From the given information:
radius = 15 m
Time T = 23 s
a) Speed (v) = 

v = 4.10 m/s
b) The magnitude of the acceleration is:

a = 1.12 m/s²
c) True weight = mg
Apparent weight = normal force
From the top;
the normal force = upward direction,
weight is downward as well as the acceleration.
true weight - normal force = ma
apparent weight =mg - ma


= 0.886 m/s²
d)
From the bottom;
acceleration is upward, so:
apparent weight - true weight = ma
apparent weight = true weight + ma



= 1.114 m/s²
Answer:
Energy of one mole of photon will be
Explanation:
We have given wavelength of photon 
Velocity of light is given 
Plank's constant 
Energy of the photon is given by 
We have to find the energy of one mole of photon
One mole of photon is equal to 
So energy of one mole of photon will be equal to 
So energy of one mole of photon will be 
The correct symbol is 4He. You may also encounter it displayed as helium-4, He-4.
The frequency of the re-emitted light is identical to that of the absorbed light.
To find the answer, we need to know more about the frequency of light.
<h3> Why the re-emitted light has the same frequency?</h3>
- The wavelength of the light that is momentarily absorbed in glass and then re-emitted is the same, which explains why the re-emitted light has the same frequency as the absorbed light and the frequency of the absorbed light is the same.
- An electromagnetic wave's energy is inversely related to its frequency.
- The relationship between the wave's wavelength and frequency depends on the speed of light:
, c is the speed of light.
- Despite not having mass, light still has energy, and that energy is conserved.
- As a result, in order for there to be energy conservation, the energy of the light that is received and reemitted must be equal.
Thus, we can conclude that, the re-emitted light's frequency matches the absorbed light's frequency.
Learn more about frequency here:
brainly.com/question/26754018
#SPJ4