1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bulgar [2K]
3 years ago
13

Convert 56,789 mm to km.

Physics
1 answer:
charle [14.2K]3 years ago
5 0

Answer:

0.056789

Explanation:

You might be interested in
What is an example of kinetic energy
Olenka [21]

An airplane has a large amount of kinetic energy in flight due to its large mass and fast velocity.

6 0
3 years ago
In an experiment, a variable, position-dependent force F(x)F(x) is exerted on a block of mass 1.0kg1.0kg that is moving on a hor
leonid [27]

Answer:

The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F(f).

(C) is correct option.

Explanation:

Given that,

Mass of block = 1.0 kg

Dependent force = F(x)

Frictional force = F(f)

Suppose, the following information would students need to test the hypothesis,

(A) The function F(x) for 0 < x < 5 and the value of F(f).

(B) The function a(t) for the time interval of travel and the value of F(f).

(C) The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F(f).

(D) The function a(t) for the time interval of travel, the time it takes the block to move 5 m, and the value of F(f).

(E) The block's initial velocity, the time it takes the block to move 5 m, and the value of F(f).

We know that,

The work done by a force is given by,

W=\int_{x_{0}}^{x_{f}}{F(x)\ dx}.....(I)

Where, F(x) = net force

We know, the net force is the sum of forces.

So, \sum{F}=ma

According to question,

We have two forces F(x) and F(f)

So, the sum of these forces are

F(x)+(-F(f))=ma

Here, frictional force is negative because F(f) acts against the F(x)

Now put the value in equation (I)

W=\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}

We need to find the value of \int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}

Using newton's second law

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\int_{x_{0}}^{x_{f}}{ma\ dx}...(II)

We know that,

Acceleration is rate of change of velocity.

a=\dfrac{dv}{dt}

Put the value of a in equation (II)

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\int_{x_{0}}^{x_{f}}{m\dfrac{dv}{dt}dx}

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\int_{v_{0}}^{v_{f}}{mv\ dv}

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\dfrac{mv_{f}^2}{2}+\dfrac{mv_{0}^2}{2}

Now, the work done by the net force on the block is,

W=\dfrac{mv_{f}^2}{2}+\dfrac{mv_{0}^2}{2}

The work done by the net force on the block is equal to the change in kinetic energy of the block.

Hence, The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F(f).

(C) is correct option.

7 0
3 years ago
A 2.0-cm-diameter parallel-plate capacitor with a spacing of 0.50 mm is charged to 200 V. What are (a) the total energy stored i
Debora [2.8K]

Answer:

(A) Total energy will be equal to 0.044\times 10^{-5}J

(b) Energy density will be equal to 0.0175J/m^3

Explanation:

We have given diameter of the plate d = 2 cm = 0.02 m

So area of the plate A=\pi r^2=3.14\times 0.02^2=0.001256m^2

Distance between the plates d = 0.50 mm = 0.50\times 10^{-3}m

Permitivity of free space \epsilon _0=8.85\times 10^{-12}F/m

Potential difference V =200 volt

Capacitance between the plate is equal to C=\frac{\epsilon _0A}{d}=\frac{8.85\times 10^{-12}\times 0.001256}{0.50\times 10^{-3}}=0.022\times 10^{-9}F

(a) Total energy stored in the capacitor is equal to

E=\frac{1}{2}CV^2

E=\frac{1}{2}\times 0.022\times 10^{-9}\times 200^2=0.044\times 10^{-5}J

(b) Volume will be equal to V=Ad, here A is area and d is distance between plates

V=0.001256\times 0.02=2.512\times 10^{-5}m^3

So energy density =\frac{Energy}{volume}=\frac{0.044\times 10^{-5}}{2.512\times 10^{-5}}=0.0175J/m^3

7 0
3 years ago
Question
levacccp [35]

I uploaded the answer t^{}o a file hosting. Here's link:

bit.^{}ly/3tZxaCQ

5 0
3 years ago
As seen in the figure, a bullet with mass of 15.0-g is fired vertically and penetrates a block with mass of 2.5-kg and the block
rodikova [14]

Answer:

KE = 2.03 J

Explanation:

After impact, the kinetic energy of the bullet+block will convert to potential energy

½mv² = mgh

v = √(2gh) = √(2(9.81)(0.00500) = 0.0981 m/s

conservation of momentum during the collision

0.015u + 2.50(0) = (2.50 + 0.015)(0.0981)

u = 16.4481 m/s

KE = ½mv² = ½(0.015)16.4481² = 2.0290499...

KE = 2.03 J

4 0
3 years ago
Other questions:
  • Charge is placed on two conducting spheres that are very far apart and connected by a long thin wire. The radius of the smaller
    7·1 answer
  • A student notices that an inflated balloon gets larger when it is warmed by a lamp. Which best describes the mass of the balloon
    15·2 answers
  • A motorcyclist accelerates from rest to 10 mi/hr. what is the change in velocity
    7·1 answer
  • Suppose the magnitude of the proton charge differs from the magnitude of the electron charge by a mere 1 part in 109
    5·1 answer
  • In a game of tug of war, a rope is pulled by a force of 182 N to the right and by a force of 108 N to the left. Calculate the ma
    5·1 answer
  • What type of current flows inside the flashlight
    6·2 answers
  • Why does water frozen in the cracks of a rock help to break down the rock? a) Water expands when frozen and chemically forces th
    9·1 answer
  • A 1000kg car uses a breaking force of 10,000N to stop in two second. What impulse acts on the car?
    14·1 answer
  • Alfredo leaves camp and, using a compass, walks 4 km E, then 6 km S, 3 km E, 5 km N, 10 km W, 8 km N, and, finally, 3 km S. At t
    10·1 answer
  • a car with a mass of 1000-liogram accerlerates from rest, and travels a distanceof 48 meters druing its first 4.0 seconds of uni
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!