Answer:
The correct appropriate will be Option 1 (Acid anhydrides are less stable than esters so the equilibrium favors the ester product.)
Explanation:
- Acid anhydride, instead of just a carboxyl group, is typically favored for esterification. The predominant theory would be that Anhydride acid is somewhat more volatile than acid. This is favored equilibrium changes more toward the right of the whole ester structure.
- Extremely responsive than carboxylic acid become acid anhydride as well as acyl chloride. Thus, for esterification, individuals were most favored.
The other options offered are not relevant to something like the scenario presented. So, the solution here is just the right one.
Because in difrent materials atoms are more compact or less compact.if they are less compact then it will be easear for them to move
Answer:
P = 27.9 atm
Explanation:
Given data:
Mass of CO₂ = 25 g
Temperature = 25°C (25+273.15 K = 298.15 K)
Volume of gas = 0.50 L
Pressure of gas = ?
Solution:
Firs of all we will calculate the number of moles of gas,
Number of moles = mass/molar mass
Number of moles = 25 g/ 44 g/mol
Number of moles = 0.57 mol
Pressure of gas :
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
P × 0.50 L = 0.57 mol × 0.0821 atm.L/ mol.K × 298.15 K
P = 13.95 atm.L/ 0.50 L
P = 27.9 atm
Answer:
Option B, HCO3 1-
Explanation:
The valence of Sodium ion is +1 and the valence of HCO3 is -1. Thus, sodium ion has an extra electron to be donated to complete its outer shell while HCO3 needs an electron to complete its outer shell
Hence Na will combine with HCO3 to form NaHCO3
Option B is correct