Galileo said that the Sun revolved around the Earth, and that the Earth was the center of the universe ! (:
Answer:
You have to prepare for the lab (Materials, work, paper etc.)
Set up the lab know where the lab will be taking place
Read thru the experiment before doing the lab
Make a hypothesis
Write down notes, observations, measures anything important to help with the lab!
Hey there!
Just say what color you think the mixture would look like if those elements were combined. Personally I don't know because I don't have context, but if it comes to it just pick a color :)
Good luck, have a good night.
First, recognize that this is an elimination reaction in which hydroxide must leave and a double bond must form in its place. It is likely an E2 reaction. Here is an efficient mechanism:
1) Pre-reaction: Protonate the -OH to make it a good leaving group, water. H2SO4 or any strong H+ donor works. The water is positively charged but still connected to the compound.
2) E2: Use a sterically hindered base, such as tert-butoxide (tButO-) to abstract the hydrogen from the secondary carbon. [You want a sterically hindered base because a strong, non-sterically hindered base could also abstract a hydrogen from one of the two methyl groups on the tertiary carbon, and that leads to unwanted products, which is not efficient]. As the proton of hydrogen is abstracted, water leaves at the same time, creating an intermediate tertiary carbocation, and the 2 electrons in the C-H bond immediately are used to make a double bond towards the partial positive charge.
In the products we see the major product and water, as expected. Even though you have an intermediate, remember that an E2 mechanism technically happens in one step after -OH protonation.
Answer : The value of
is 28.97 kJ/mol
Explanation :
To calculate
of the reaction, we use clausius claypron equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= vapor pressure at temperature
= 462.7 mmHg
= vapor pressure at temperature
= 140.5 mmHg
= Enthalpy of vaporization = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = ![-21.0^oC=[-21.0+273]K=252K](https://tex.z-dn.net/?f=-21.0%5EoC%3D%5B-21.0%2B273%5DK%3D252K)
= final temperature = ![45^oC=[-41.0+273]K=232K](https://tex.z-dn.net/?f=45%5EoC%3D%5B-41.0%2B273%5DK%3D232K)
Putting values in above equation, we get:
![\ln(\frac{140.5mmHg}{462.7mmHg})=\frac{\Delta H_{vap}}{8.314J/mol.K}[\frac{1}{252}-\frac{1}{232}]\\\\\Delta H_{vap}=28966.6J/mol=28.97kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B140.5mmHg%7D%7B462.7mmHg%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B252%7D-%5Cfrac%7B1%7D%7B232%7D%5D%5C%5C%5C%5C%5CDelta%20H_%7Bvap%7D%3D28966.6J%2Fmol%3D28.97kJ%2Fmol)
Therefore, the value of
is 28.97 kJ/mol