Answer:a) P = Po + rho×h×g
b) P = 5.4 × 10^9 pa
c) F = P/A = (Po + rho×h×g)/A
d) 1.174×10^11N
Explanation: Using the formula
P = Po + rho×h×g
P = 1.0 x 10^5 + 1000 × 5.5 × 9.81
P = 5.4 × 10^9pa
The magnitude of the force exerted by water on the top of the person's head F at the depth h in terms of P
F = P/A = (Po + rho×h×g)/A
Using the above formula
Where A = 0.046m^2
F = P/ A = 5.4×10^9/0.046
F = 1.174×10^11N
One of the concepts to be used to solve this problem is that of thermal efficiency, that is, that coefficient or dimensionless ratio calculated as the ratio of the energy produced and the energy supplied to the machine.
From the temperature the value is given as

Where,
T_L = Cold focus temperature
T_H = Hot spot temperature
Our values are given as,
T_L = 20\° C = (20+273) K = 293 K
T_H = 440\° C = (440+273) K = 713 K
Replacing we have,



Therefore the maximum possible efficiency the car can have is 58.9%
The force applied by the competitor is littler than the heaviness of the barbell. At the point when the barbell quickens upward, the power applied by the competitor is more prominent than the heaviness of the barbell. When it decelerates upward, the power applied by the competitor is littler than the heaviness of the barbell.
Answer:
Time will be 19 ms so option (a) is correct option
Explanation:
We have given that mass of wire m = 50 gram = 0.5 kg
Frequency f = 810 Hz
Wavelength = 0.4 m
Velocity is given by

Amplitude is given as d = 6 m
So time 
So option (a) is correct option
An object's momentum is the product of its mass and its velocity:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
p = -80kg×m/s
m = 8kg
Plug in these values and solve for v:
-80 = 8v
v = -10m/s
Choice D