Answer: The correct option is C ( is very hard and burns cleanly).
Explanation:
COAL is a form of rock that is made up of mostly carbon amongst other elements which includes sulphur, nitrogen, hydrogen and oxygen. There are different types of coal which include:
--> anthracite ( 90% carbon)
--> bituminous coal ( 70-90% carbon)
--> lignite ( 60- 70% carbon) and
--> peat (60 % carbon).
Anthracite is the type of coal that contains the highest carbon content ( 90% carbon). This makes it very hard and is often a times referred to as HARD COAL. Anthracite is a higher quality coal for domestic and open fire heating. This is because it contains less impurities than other type of coal and thereby making it to BURN CLEANLY avoiding atmospheric pollution.
Answer:
Observing. This is the most basic skill in science. ...
Communicating. It is important to be able to share our experiences. ...
Classifying. After making observations it is important to notice similarities, differences, and group objects according to a purpose. ...
Inferring. ...
Measuring. ...
Predicting.Explanation:
hope this he;lp
pick me a the brainliest
Answer:
ΔH = 2.68kJ/mol
Explanation:
The ΔH of dissolution of a reaction is defined as the heat produced per mole of reaction. We have 3.15 moles of the solid, to find the heat produced we need to use the equation:
q = m*S*ΔT
<em>Where q is heat of reaction in J,</em>
<em>m is the mass of the solution in g,</em>
<em>S is specific heat of the solution = 4.184J/g°C</em>
<em>ΔT is change in temperature = 11.21°C</em>
The mass of the solution is obtained from the volume and the density as follows:
150.0mL * (1.20g/mL) = 180.0g
Replacing:
q = 180.0g*4.184J/g°C*11.21°C
q = 8442J
q = 8.44kJ when 3.15 moles of the solid react.
The ΔH of the reaction is:
8.44kJ/3.15 mol
= 2.68kJ/mol
Answer:
287.30 g of FeCO₃
Solution:
The Balance Chemical Equation is as follow,
FeCl₂ + Na₂CO₃ → FeCO₃ + 2 NaCl
Step 1: Calculate Mass of FeCl₂ as,
Molarity = Moles ÷ Volume
Solving for Moles,
Moles = Molarity × Volume
Putting Values,
Moles = 2 mol.L⁻¹ × 1.24 L
Moles = 2.48 mol
Also,
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting Values,
Mass = 2.48 mol × 126.75 g.mol⁻¹
Mass = 314.34 g of FeCl₂
Step 2: Calculate Mass of FeCO₃ formed as,
According to equation,
126.75 g (1 mole) FeCl₂ produces = 115.85 g (1 mole) FeCO₃
So,
314.34 g of FeCl₂ will produce = X g of FeCO₃
Solving for X,
X = (314.34 g × 115.85 g) ÷ 126.75 g
X = 287.30 g of FeCO₃
<h2>
brainlyest pleas</h2>
Five hundred twenty million, three hundred and forty thousand. hope it helps!