The final temperature : 78.925°C
<h3>Further explanation </h3>
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Energy releases = 130 kcal = 130 x 4.18 kJ=543.4 kJ
The final temperature :

Final temperature :
ΔT=final-initial
51.925°c=final-27°c
final = 51.925+27=78.925°C
Recall that a mole is defined as Avogadro's number of particles what the formula of caffeine basically tells us is that every molecule of caffeine you will have 8 atoms of carbon 10 atoms of hydrogen 4 atoms of nitrogen and 2 atoms of oxygen so if we have 0.3 moles of caffeine we will have 4*0.3 moles of nitrogen which is 0.12 and you got the idea
<u>Answer:</u> The value of
is 0.136 and is reactant favored.
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the chemical reaction between carbon monoxide and hydrogen follows the equation:

The expression for the
is given as:
![K_{c}=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
We are given:
![[NH_3]=0.25M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.25M)
![[H_2]=0.75M](https://tex.z-dn.net/?f=%5BH_2%5D%3D0.75M)
![[N_2]=1.1M](https://tex.z-dn.net/?f=%5BN_2%5D%3D1.1M)
Putting values in above equation, we get:


There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium.
For the given reaction, the value of
is less than 1. Thus, the reaction is reactant favored.
Hence, the value of
is 0.136 and is reactant favored.
Answer:
t (ºC) = T(K) -273
Explanation:
t (ºC) = 100.6 -273
t (ºC) =<u><em> </em></u><u>- 172,4</u>
Answer:
sulfur
Explanation:
without sulfur you can not grow any food