Since the stone was dropped from height, its initial velocity = 0 m/s
Using v² = u² + 2gs.
Where g ≈ 10 m/s², u = initial velocity = 0 m/s, s = height from drop = 2.5 m
v² = u² + 2gs
v² = 0² + 2*10*2.5
v² = 0 + 50
v² = 50
v = √50
v ≈ 7.07 m/s
Hence velocity just before hitting the ground is ≈ 7.07 m/s
Hey how's your day going
I hope after I answer that you understand and don't just paste my answer into your assignment!!! (<- read!!!)
Answer \|/
Ice is less dense than water.
Reason why \|/
When water freezes the molecules inside completely stop moving (They still vibrate but don't change their position much). In doing so, they spread out a touch which makes it less dense than liquid water. So ice floats
The given question is incomplete. The complete question is as follows.
A parallel-plate capacitor has capacitance
= 8.50 pF when there is air between the plates. The separation between the plates is 1.00 mm.
What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates is not to exceed
V/m?
Explanation:
It is known that relation between electric field and the voltage is as follows.
V = Ed
Now,
Q = CV
or, Q = 
Therefore, substitute the values into the above formula as follows.
Q = 
=
= 
Hence, we can conclude that the maximum magnitude of charge that can be placed on each given plate is
.
Answer:
t = 13.7 s or t = 14 s with proper significant figures
Explanation:
The initial speed is 0 m/s since the car starts from rest, acceleration is 5.5 m/s2 and distance is 523 m.
Since we have initial speed, acceleration and distance we can use the following formula to find the time. We can now use algebra to work out our answer.
d = vt +
at²
523 = (0)t + (
)(5.5)t²
523 = 2.8t²
186.8 = t²
13.7 s = t
(t = 14 s with proper significant figures)
Answer:
average velocity include total displacement whereas average speed include total distance