Answer:
100 Joule
Explanation:
Amount of heat in agiven body is given by Q = m•C•ΔT
where m is the mass of the body
c is the specific heat capacity of body. It is the amount of heat stored in 1 unit weight of body which raises raises the temperature of body by 1 unit of temperature.
ΔT is the change in the temperature of body
___________________________________________
coming back to problem
m = 5g
C = 2J/gC
since, it is given that temperature of body increases by 10 degrees, thus
ΔT = 10 degrees
Using the formula for heat as given
Q = m•C•ΔT
Q = 5* 2 * 10 Joule= 100 Joule
Thus, 100 joule heat must be added to a 5g substance with a specific heat of 2 J/gC to raise its temperature go up by 10 degrees.
Answer:
C
Explanation:
Ray of light when hits any specimen or object. The light is partially reflected, partially reflected and partially absorbed. It is never completed reflected, refracted or absorbed. Hence, the correct answer would be c.
Answer:
α = 13.7 rad / s²
Explanation:
Let's use Newton's second law for rotational motion
∑ τ = I α
we will assume that the counterclockwise turns are positive
F₁ 0 + F₂ R₂ - F₃ R₃ = I α
give us the cylinder moment of inertia
I = ½ M R₂²
α = (F₂ R₂ - F₃ R₃) 
let's calculate
α = (24 0.22 - 13 0.10)
2/12 0.22²
α = 13.7 rad / s²
Answer: 1175 J
Explanation:
Hooke's Law states that "the strain in a solid is proportional to the applied stress within the elastic limit of that solid."
Given
Spring constant, k = 102 N/m
Extension of the hose, x = 4.8 m
from the question, x(f) = 0 and x(i) = maximum elongation = 4.8 m
Work done =
W = 1/2 k [x(i)² - x(f)²]
Since x(f) = 0, then
W = 1/2 k x(i)²
W = 1/2 * 102 * 4.8²
W = 1/2 * 102 * 23.04
W = 1/2 * 2350.08
W = 1175.04
W = 1175 J
Therefore, the hose does a work of exactly 1175 J on the balloon