Answer:
pH = 1.33
Explanation:
Because HCl is a strong acid, each mole of HCl will completely dissociate into H⁺ and Cl⁻ species.
Now we calculate the molar concentration (molarity) of H⁺:
- Molarity = moles / volume
(750 mL ⇒ 750 / 1000 = 0.750 L)
- Molarity = 0.035 moles / 0.750 L
Then we calculate the pH of the solution:
Answer:
47911.1 pa
Explanation:
The SI base unit of pressure is pascal, which is N/m^2.
2200 kg is 2200*9.8=21560 N, and 4500 cm^2=4500/10000=0.45 m^2.
So the total pressure exerted on the ground (!!) is 21560/0.45= 47911.1 Pa.
Answer:
it would be the second choice
You need evidence to support a conclustion
There are two ways to solve this problem. We can use the ICE method which is tedious and lengthy or use the Henderson–Hasselbalch equation. This equation relates pH and the concentration of the ions in the solution. It is expressed as
pH = pKa + log [A]/[HA]
where pKa = - log [Ka]
[A] is the concentration of the conjugate base
[HA] is the concentration of the acid
Given:
Ka = 1.8x10^-5
NaOH added = 0.015 mol
HC2H3O2 = 0.1 mol
NaC2H3O2 = 0.1 mol
Solution:
pKa = - log ( 1.8x10^-5) = 4.74
[A] = 0.015 mol + 0.100 mol = .115 moles
[HA] = .1 - 0.015 = 0.085 moles
pH = 4.74 + log (.115/0.085)
pH = 4.87