Could be easy for some people and hard for some people.
1.The answer is True
2.The answer is False
We apply the following equation
T = 2π * sqrt (L/g)
Where g is the gravity = 9.8 m/s^2
L is the longitude of the pendulum (Height of the tower)
T is the period. (T = 18s)
We find L.............> (T /2π)^2 = L/g
L = g*(T /2π)^2...........> L = 80.428 meters
<h2>Answer: The second Statement
</h2>
<h2>
The algebraic sum of the currents flowing through each of the three resistors is equal to the current through the battery. </h2><h2 />
In a series circuit, the value of the equivalent resistance
is equal to the sum of the values of each of them:
Where:
<h2>The equivalent resistance of the combination of resistors is greater than the resistance of any one of three resistors. </h2>
In this case the current
flowing through the resistors is the same in each one. This is because the current flowing through the circuit only has one way to go, so the current intensity is the same throughout the circuit.
Therefore:
<h2>The current flowing through each of the resistors is the same and is equal to the current through the battery. </h2><h2>The algebraic sum of the voltages across the three resistors is equal to the voltage across the battery. </h2>
The battery provides a voltage
that is the sum of the different voltages at the ends of the resistors:
Where the Voltage, according to Ohm's law is:
Hence, the second statement of this question is <u>True
</u>