![\tt -\dfrac{1}{2}\dfrac{d[N_2O]}{dt}=\dfrac{1}{2}\dfrac{d[N_2]}{dt}=\dfrac{1}{1}\dfrac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2O%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
<h3>Further explanation</h3>
Reaction
2N2O(g) — 2N2(g) + O2(g)
Required
relative rate
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
so the relative rates for the reaction above are :
![\tt -\dfrac{1}{2}\dfrac{d[N_2O]}{dt}=\dfrac{1}{2}\dfrac{d[N_2]}{dt}=\dfrac{1}{1}\dfrac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2O%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
for what????? complete the question
Answer:
Option (1) Br– is the catalyst, and the reaction follows a faster pathway with Br– than without
Explanation:
Let us consider the equation below:
Step 1:
H2O2(aq) + Br–(aq) → H2O(l) + BrO–(aq)
Step 2:
BrO–(aq) + H2O2(aq) → H2O(l) + O2(g) + Br–(aq)
From the above equation, we can see that Br– is unchanged.
This implies that Br– is the catalyst as catalyst does not take part in a chemical reaction but they create an alternate pathway to lower the activation energy in order for the reaction to proceed at a much faster rate to arrive at the products.
Its either C or D I’m stuck on this.
<u>Answer:</u>
<em>Atomic number 75 is dedicated to an element named rhenium and has been given Re as its chemical name.</em>
<u>Explanation:</u>
With a really low concentration it is one of the rarest metals that is found in Earth's crust.
Like all other elements rhenium also has certain isotopes among with 185 and 187 are the most stable ones. Hence these two are the ones that are naturally available abundance is 34% and 63% respectively.