Answer:
[Cl2] equilibrium = 0.0089 M
Explanation:
<u>Given:</u>
[SbCl5] = 0 M
[SbCl3] = [Cl2] = 0.0546 M
Kc = 1.7*10^-3
<u>To determine:</u>
The equilibrium concentration of Cl2
<u>Calculation:</u>
Set-up an ICE table for the given reaction:

I 0 0.0546 0.0546
C +x -x -x
E x (0.0546-x) (0.0546-x)
![Kc = \frac{[SbCl3][Cl2]}{[SbCl5]}\\\\1.7*10^{-3} =\frac{(0.0546-x)^{2} }{x} \\\\x = 0.0457 M](https://tex.z-dn.net/?f=Kc%20%3D%20%5Cfrac%7B%5BSbCl3%5D%5BCl2%5D%7D%7B%5BSbCl5%5D%7D%5C%5C%5C%5C1.7%2A10%5E%7B-3%7D%20%3D%5Cfrac%7B%280.0546-x%29%5E%7B2%7D%20%7D%7Bx%7D%20%5C%5C%5C%5Cx%20%3D%200.0457%20M)
The equilibrium concentration of Cl2 is:
= 0.0546-x = 0.0546-0.0457 = 0.0089 M
Answer:
tri-
Explanation:
Examples could be Tri-angle, Tri-cycle, Tri-ceratops
Answer:
2VO + 3Fe2O3 —> V2O5 + 6FeO
Explanation:
The skeletal equation for the reaction is given below below:
VO + Fe2O3 —> V2O5 + FeO
We can balance the equation above by doing the following:
There are 2 atoms of V on the right side and 1 atom on the left side. It can be balance by putting 2 in front of VO as shown below:
2VO + Fe2O3 —> V2O5 + FeO
Now, we have a total of 5 atoms of O on the left and 6 atoms on the right side. We can balance it by putting 3 in front of Fe2O3 and 6 in front of FeO as shown below:
2VO + 3Fe2O3 —> V2O5 + 6FeO
Now, we can see that the equation is balanced
Answer:
uh i think its D All of the above
Explanation:
sorry if its wrong