Answer:
The answer to your question is: $ 35.6
Explanation:
C₆H₁₂N₂O₄Pt
Platinum = 52.5 %
Price = $1047 / troy ounce
cost of platinum = ? of 2 g
1 troy ounce = 480 grains
1 grain = 64.8 mg
Process
Get 52.5 % of 2 g
2 g ----------------- 100 %
x ----------------- 52.5%
x = (52.5 x 2) / 100
x = 1.05 g
1 g --------------------- 1000 mg
1.05 g ---------------- x
x = 1050 mg of Pt
1 grain ---------------- 64.8 mg
x --------------- 1050 mg
x = 16.2 grains
480 grains ---------------- 1 troy ounce
16.2 grains ---------------- x
x = (16.2 x 1) / 480
x = 0.034 troy ounce
$ 1047 ------------------ 1 troy ounce
x ------------------- 0.034
x = (0,034 x 1047) / 1
x = $ 35.6
From the calculation, the standard free energy of the system is -359kJ.
<h3>What is the standard free-energy?</h3>
The standard free-energy is the energy present in the system. We have to first obtain the cell potential using the formula;
Ereduction - E oxidation = 0.96 V - 0.34 V = 0.62 V
Using the formula;
ΔG = -nFEcell
ΔG =-(6 * 96500 * 0.62)
ΔG =-359kJ
Learn more about free energy:brainly.com/question/15319033
#SPJ1
The value 6.0 x 10^3- 2.3 × 10^3 in scientific notation is 3.7 × 10^3.
<h3> What is scientific notation?</h3>
Scientific notation is a way to write very large or very small numbers so that they are easier to read and work with.
You express a number as the product of a number greater than or equal to 1 but less than 10 and an integral power of 10 .
<h3>Why it is used? </h3>
There are two reasons to use scientific notation.
- The first is to reveal honest uncertainty in experimental measurements.
- The second is to express very large or very small numbers so they are easier to read.
Given,
= 6.0 x 10^3- 2.3 × 10^3
= (6.0 - 2.3) × 10^3
= 3.7 × 10^3
Thus, we find that the value 6.0 x 10^3- 2.3 × 10^3 in scientific notation is 3.7 × 10^3.
learn more about scientific notation :
brainly.com/question/18073768
#SPJ1
Answer:
Pentan-2-ol
Explanation:
On this reaction, we have a <u>Grignard reagent</u> (ethylmagnesium bromide), therefore we will have the production of a <u>carbanion</u> (step 1). Then this carbanion can <u>attack the least substituted carbon</u> in the epoxide in this case carbon 1 (step 2). In this step, the epoxide is open and a negative charge is generated in the oxygen. The next step, is the <u>treatment with aqueous acid</u>, when we add acid the <u>hydronium ion</u> (
) would be produced, so in the reaction mechanism, we can put the hydronium ion. This ion would be <u>attacked by the negative charge</u> produced in the second step to produce the final molecule: <u>"Pentan-2-ol".</u>
See figure 1
I hope it helps!
For the chemical reactiom to be at equilibrium:
1- The rate of forward reaction must be equal to the rate of the reverse reaction.
2- The mass of EACH element must be equal before and after the reaction (no NET change in mass), otherwise the equilibrium will shift.
Important note: you need to check the mass of each element before and after the reaction (i.e, reactants side and products side) and the not the mass of the system as a whole. This is because the mass of the whole system will be preserved whether the system is at equilibrium or not (this is the fundamental law of mass conservation)