Answer:
the mass of the bullet is 10.5 g
Explanation:
Given;
initial velocity, u₁ = 280 m/s
final velocity of the bullet, v₁ = 70 m/s
final velocity of the block, v₂ = 0.2 m/s
mass of the block, m₂ = 11 kg
initial velocity of the block, u₂ = 0
let the mass of the bullet = m₁
Apply the principle of conservation of linear momentum for elastic collision to calculate the mass of the bullet.
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
280m₁ + 11(0) = 70m₁ + 11 x 0.2
280m₁ = 70m₁ + 2.2
280m₁ - 70m₁ = 2.2
210m₁ = 2.2
m₁ = 2.2/210
m₁ = 0.0105 kg
m₁ = 10.5 g
Therefore, the mass of the bullet is 10.5 g
Ummm what does this even mean I need a picture to help u
. Methylated spirits have ethanol as a base but may include methyl alcohol (methanol) as part of the denaturing process.
Answer:
Yes. Towards the center. 8210 N.
Explanation:
Let's first investigate the free-body diagram of the car. The weight of the car has two components: x-direction: towards the center of the curve and y-direction: towards the ground. Note that the ground is not perpendicular to the surface of the Earth is inclined 16 degrees.
In order to find whether the car slides off the road, we should use Newton's Second Law in the direction of x: F = ma.
The net force is equal to
Note that 95 km/h is equal to 26.3 m/s.
This is the centripetal force and equal to the x-component of the applied force.
As can be seen from above, the two forces are not equal to each other. This means that a friction force is needed towards the center of the curve.
The amount of the friction force should be
Qualitatively, on a banked curve, a car is thrown off the road if it is moving fast. However, if the road has enough friction, then the car stays on the road and move safely. Since the car intends to slide off the road, then the static friction between the tires and the road must be towards the center in order to keep the car in the road.
Answer:
Crystal structure
Explanation:
The repeated pattern of similar particles in a material is called crystal. Crystal structure is the largest constituent unit of a solid matter.
The fundamental identity of a crystal structure is a unit cell that is formed by the arrangement of atoms or ions in a particular manner. A crystal is defined as a regular, long-ranged repeated arrangement of unit cells.
Crystal have a sharp melting and boiling point and they give a sharp edge on being cut with a knife.