Sorry the answer might be a little late but it would be <span>Simple squamous</span>
PV / T = P'V' / T'
V = V'
P / T = P' / T'
P = 630 mmHg
T = 100 K
P' = 1760 mmHg
T' = ?
630 / 100 = 1760 / T'
T' = 1760 / 6,3
T' = 279,36 K
T' ≈ 280 K
<h3>Answer:</h3>
Strontium (Sr)
<h3>Explanation:</h3>
The condition given in statement is the presence of two valence electron. Hence, first we found the electronic configuration of given atoms as follow;
Rubidium [Kr] 5s¹
Strontium [Kr] 5s²
Zirconium [Kr] 4d² 5s²
Silver [Kr] 4d¹⁰ 5s¹
From above configurations it is cleared that only Strontium and Zirconium has two electrons in its valence shell.
We also know that s-block elements are more reactive than transition elements due to less shielding effect in transition elements hence, making it difficult for transition metals to loose electrons as compared to s-block elements. Therefore, we can conclude that Strontium present in s-block with two valence electrons is the correct answer.
It depends on what unit/subject you're looking at.
Because in physics, I know that if you are considering Newton's theory of particles, all particles technically go in a straight line from the original direction. BUT, if you're looking at the Wave of the Particle theory, then you would assume that particles do not necessarily follow the above b/c they follow the properties of a wave...
The relationship is matter and gas that go along with science