Answer:
induced EMF = 240 V
and by the lenz's law direction of induced EMF is opposite to the applied EMF
Explanation:
given data
inductance = 8 mH
resistance = 5 Ω
current = 4.0 A
time t = 0
current grow = 4.0 A to 10.0 A
to find out
value and the direction of the induced EMF
solution
we get here induced EMF of induction is express as
E = - L
...................1
so E = - L 
put here value we get
E = - 8 ×

E = -40 × 6
E = -240
take magnitude
induced EMF = 240 V
and by the lenz's law we get direction of induced EMF is opposite to the applied EMF
Answer:
<u><em>Rate of dissolving compounds:</em></u>
If we increase the temperature of the solution, then the dissolving compound would dissolve more easily.
<u><em>Boiling Point of Compounds:</em></u>
If the inter-molecular forces of any compound is really strong, then the boiling point of the compound would be really high.
Answer: 
Explanation:
When a number is written in scientific notation (representing the number using powers of base ten) it is expressed so that it contains a digit in the place of the units and all other digits after the decimal point, multiplied by the respective exponent.
Then, the significant figures (or significant digits) will be the digits that are before the power of ten.
Now, in the case of the number 299,792,458 if we want to write it with three significant digits, we have to write it in scientific notation as:

Draw a right triangle so that its hypotenuse is 600 ft. The adjacent side is below the vertical, and it makes an angle of 75° with the hypotenuse.
Let h = height of the right triangle.
By definition,
sin75° = h/600
h = 600*sin75° = 579.555 = 580 ft (nearest ft)
Answer: 580 ft (nearest foot)