Before going to answer this question first we have to know the fundamental principle of magnetism.
A magnet have two poles .The important characteristic of a magnet is that like poles will repel each other while unlike poles will attract each other.
Through this concept the question can be answered as explained below-
A-As per first option the side of magnet A is repelled by the south pole of magnet B. Hence the pole of a must be south .It can't be north as it will lead to attraction.
B-The side of magnet A is repelled by the north pole of magnet B. Hence the side of A must be north pole.It can't be a south pole.
C-The side of magnet A is attracted by the south pole of magnet B .Hence the side of magnet A must be north.Hence this is right
D-The side of magnet A is attracted by the north pole of magnet B. Hence the side of A must south.It can't be north as it will lead to repulsion.
Hence the option C is right.
<span>Each of these systems has exactly one degree of freedom and hence only one natural frequency obtained by solving the differential equation describing the respective motions. For the case of the simple pendulum of length L the governing differential equation is d^2x/dt^2 = - gx/L with the natural frequency f = 1/(2π) √(g/L). For the mass-spring system the governing differential equation is m d^2x/dt^2 = - kx (k is the spring constant) with the natural frequency ω = √(k/m). Note that the normal modes are also called resonant modes; the Wikipedia article below solves the problem for a system of two masses and two springs to obtain two normal modes of oscillation.</span>
Answer:
Layer 1, Rock 2, Rock 1, Fault

v = final velocity
u = initial velocity
t = time taken
the acceleration of the cyclist is

approximately 3.33 m/s^2
the acceleration of the car is

5.0 m/s^2

Every atom has electrons. When you add new electrons to the wire, they will be passed on to an atom. The electrons keep passing from atom to atom until it reaches the light source, basically. It's kinda like that one song "100 jugs of milk" or whatever it's called. Each atom passes the atom next to it an electron.