Answer:
The question is incorrect and incomplete. Here's the correct question:
It is difficult to extinguish a fire on a crude oil tanker, because each liter of crude oil releases 2.80 × 10 7 J of energy when burned. To illustrate this difficulty,a) calculate the number of liters of water that must be expended to absorb the energy released by burning 1.00 L of crude oil, if the water has its temperature raised from 23.5 °C to 100 °C , it boils, and the resulting steam is raised to 315 °C. b)Discuss additional complications caused by the fact that crude oil has less density than water.
Explanation:
Q= mc ΔT
Q= heat energy
m is mass
ΔT is change in temperature and c is specific heat capacity
calculating heat for latent heat of vaporisation
Q= ml where l is latent heat of vaporisation
a) Total heat energy used= heat required to raise temperature from 23.5 °C to 100 °C, heat required to boil water and heat required to further raise temperature from 100 °C to 315°C
Q = mc ΔT₁ + mL + mc ΔT₂
Q = m(c ΔT₁ + L + c ΔT₂)
m= Q÷(c ΔT₁ + L + c ΔT₂)
Q= 2.8 X 10⁷ J
c=4186J/kg°C
L=2256 x 10³J/kg
ΔT₁=76.5°C(100°C-23.5°C)
ΔT₂= 215°C(315°C-100°C)
(c ΔT₁ + L + c ΔT₂)= 4186J/kg°C *76.5°C + 2256 x 10³J/kg + 4186J/kg°C*215°C =3476219J/Kg
m= 2.8 x 10⁷J ÷3476219J/Kg
m =80.54 Kg
volume = mass÷ density
=80.54kg ÷ 10³kg/m³( density of water)
=0.0854m³
0.001m³ = 1 lL0.08054m³= 0.08054m³ /0.001m³= 80.54L
VOLUME is 80.54litres
b) since the density of crude is less than the density of water,and 80L of additional water is added, it'll make the crude to float on water thus inhibiting the extinguishing process
He may use a pipette with a volume greater than 25 ml to transfer the solution.
The answer is: lose electrons and form positive ions.
Most metals have strong metallic bond, because of strong electrostatic attractive force between valence electrons (metals usually have low ionization energy and lose electrons easy) and positively charged metal ions.
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
For example, magnesium has atomic number 12, which means it has 12 protons and 12 electrons. It lost two electrons to form magnesium cation (Mg²⁺) with stable electron configuration like closest noble gas neon (Ne) with 10 electrons.
Electron configuration of magnesium ion: ₁₂Mg²⁺ 1s² 2s² 2p⁶.