There should be a sufficient amount of the selected isotope in the rock.
The half-life of the isotope must be long enough to capture the age of the rock.
Explanation:
Sully must consider two main aspect before selecting her choice isotope for dating.
There must be sufficient amount of the selected isotope in the rock.
The half - life of the isotope must be long enough to capture the age of the rock.
- Radiometric dating gives a rock an absolute numerical age.
- The half-life of an isotope is time take for half of a radioactive element to decay.
- If the half-life of an isotope is very short, all the parent nuclide would have turned to daughter nuclides.
- Also, we must have sufficient amount of both the daughter and parent isotope in the selected rock.
learn more:
Radiometric dating brainly.com/question/7022607
#learnwithBrainly
Answer:
487.33 K.
Explanation:
- To calculate the no. of moles of a gas, we can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant.
T is the temperature of the gas in K.
- If n is constant, and have two different values of (P, V and T):
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 5.4 atm, V₁ = 1.0 L, T₁ = 33°C + 273 = 306 K.
P₂ = 4.3 atm, V₂ = 2.0 L, T₂ =??? K.
<em>∴ T₂ = P₂V₂T₁/P₁V₁</em> = (4.3 atm)(2.0 L)(306 K)/(5.4 atm)(1.0 L) = <em>487.33 K.</em>
#4 and #5:
To find pH given concentration of H+ or H30+
pH = - log (H+ or H30+ M)
To find pH given concentration of OH-
Since you already found the pH for this (in #4), you subtract #4's answer from 14.
14 - (pH) = pOH
The diameters of the spheres are 72.5 meters square