The state of atoms in a neon light when light is emitted is loss of energy.
Answer:
0.038 g of reactant
Explanation:
Data given:
Heat release for each gram of reactant consumption = 36.2 kJ/g
mass of reactant that release 1360 J of heat = ?
Solution:
As 36.2 kJ of heat release per gram of reactant consumption so first we will convert KJ to J
As we know
1 KJ = 1000 J
So
36.2 kJ = 36.2 x 1000 = 36200 J
So it means that in chemical reaction 36200 J of heat release for each gram of reactant consumed so how much mass of reactant will be consumed if 1360 J heat will release
Apply unity formula
36200 J of heat release ≅ 1 gram of reactant
1360 J of heat release ≅ X gram of reactant
Do cross multiplication
X gram of reactant = 1 g x 1360 J / 36200 J
X gram of reactant = 0.038 g
So 0.038 g of reactant will produce 1360 J of heat.
<u>Lithium Iodide</u><u>:</u>
~formed by the reaction of hydroxide with hydroiodic acid
Hope this helped you, have a good day bro cya)
Answer:

Explanation:
The hydrocarbon shown has a double bond. Hydrocarbons with double bonds are known as alkenes.
Cyclic alkanes have cyclic structure.
Alkanes only have single bonds.
Alkynes have triple bonds.