Answer:
1) The cryosphere contains the frozen parts of the planet. This sphere helps maintain Earth's climate by reflecting incoming solar radiation back into space. As the world warms due to increasing greenhouse gases being added to the atmosphere by humans, the snow and ice are melting.
2) Organisms like the Frilled Shark, Giant Spider Crab. Atlantic Wolffish Pair, Fangtooth Fish, Six-Gill Shark, Giant Tube Worms, Vampire Squid, Pacific Viperfish. But there are most likely archaeabacteria which are prokaryotic bacteria or single-celled organisms. A Prokaryotic cell does not contain a nucleus. It only contains one chromosome and is a single-celled organism. It was the only form of life on earth for millions of years. Examples of a Prokaryotic cell are the different types of bacteria present today.
3) Many different types of plant and animal communities call estuaries home because their waters are typically brackish — a mixture of fresh water draining from the land and salty seawater. This unique combination of salty and fresh water creates a variety of habitats. Estuaries are full of decaying plants and animals. This makes the soil of estuaries rich in nutrients. Because the soil is so rich, lots of different plants grow in estuaries. The plants attract lots of different animals to the estuary and those animals attract other animals to the estuary.
4) Temperature, humidity, precipitation, air pressure, wind speed, and wind direction are key observations of the atmosphere that help forecasters predict the weather. These same factors have been used since the first weather observations were recorded. Observational data collected by doppler radar, radiosondes, weather satellites, buoys and other instruments are fed into computerized NWS numerical forecast models. The models use equations, along with new and past weather data, to provide forecast guidance to our meteorologists. The three main factors of weather are light (solar radiation), water (moisture) and temperature.
Explanation:
U dont have to copy and paste this put these are some ideas to use for ur answers
Hello!
First, we need to determine the pKa of the base. It can be found applying the following equation:

Now, we can apply the
Henderson-Hasselbach's equation in the following way:
![pH=pKa+log( \frac{[CH_3NH_2]}{[CH_3NH_3Cl]} )=10,65+log( \frac{0,18M}{0,73M} )=10,04](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%20%5Cfrac%7B%5BCH_3NH_2%5D%7D%7B%5BCH_3NH_3Cl%5D%7D%20%29%3D10%2C65%2Blog%28%20%5Cfrac%7B0%2C18M%7D%7B0%2C73M%7D%20%29%3D10%2C04)
So,
the pH of this buffer solution is 10,04Have a nice day!
Answer:
#1: 0.00144 mmolHCl/mg Sample
#2: 0.00155 mmolHCl/mg Sample
#3: 0.00153 mmolHCl/mg Sample
Explanation:
A antiacid (weak base) will react with the HCl thus:
Antiacid + HCl → Water + Salt.
In the titration of antiacid, the strong acid (HCl) is added in excess, and you're titrating with NaOH moles of HCl that doesn't react.
Moles that react are the difference between mmoles of HCl - mmoles NaOH added (mmoles are Molarity×mL added). Thus:
Trial 1: 0.391M×14.00mL - 0.0962M×34.26mL = 2.178 mmoles HCl
Trial 2: 0.391M×14.00mL - 0.0962M×33.48mL = 2.253 mmoles HCl
Trial 3: 0.391M×14.00mL - 0.0962M×33.84mL = 2.219 mmoles HCl
The mass of tablet in mg in the 3 experiments is 1515mg, 1452mg and 1443mg.
Thus, mmoles HCl /mg OF SAMPLE<em> </em>for each trial is:
#1: 2.178mmol / 1515mg
#2: 2.253mmol / 1452mg
#3: 2.219mmol / 1443mg
<h3>#1: 0.00144 mmolHCl/mg Sample</h3><h3>#2: 0.00155 mmolHCl/mg Sample</h3><h3>#3: 0.00153 mmolHCl/mg Sample</h3>
So for that one I’m going to go with True