To solve this problem we will apply the concepts related to the kinematic equations of linear motion. From there we will define the distance as the circumference of the earth (approximate as a sphere). With the speed given in the statement we will simply clear the equations below and find the time.



The circumference of the earth would be

Velocity is defined as,


Here
, then


Therefore will take 167463.97 s or 1 day 22 hours 31 minutes and 3.97seconds
Answer =7,142.9W
I hope this helps (:
Answer:
Technician b is correct.
Explanation:
Crimping cable allows a firm connection in mechanical terms and allows a low resistance path for the signal or the current flow, solder although it is better in terms of electrical conduction, can be impractical if the cable is subjected to excessive movement.
A crimped cable with excessive movement can also be easily broken at the ends, where it joins the part of the cable that is crimped, for this reason, a cable that is in excessive motion is recomended to be spliced by joining cable with cable
.
In order to decide which metod is better for splicing cables its necessary to evaluate each situation separatly.
A. Chemical energy is formed when chemical bonds are broken.
what is the final speed of the incoming ball if it is much more massive than the stationary ball? express your answer using two significant figures. v1 = 200 m / s submitprevious answers correct
Perfectly elastic collisions means that both mechanical energy and
momentum are conserved.
Therefore, for this case, we have the equation to find the final velocity of the incoming ball is given by
v1f = ((m1-m2) / (m1 + m2)) v1i
where,
v1i: initial speed of ball 1.
v1f: final speed of ball 1.
m1: mass of the ball 1
m2: mass of the ball 2
Since the mass of the ball 1 is much larger than the mass of the ball 2 m1 >> m2, then rewriting the equation:
v1f = ((m1) / (m1) v1i
v1f = v1i
v1f = 200 m / s
answer
200 m / s
part b part complete what is the final direction of the incoming ball with respect to the initial direction if it is much more massive than the stationary ball? forward submitprevious answers correct
Using the equation of part a, we can include in it the directions:
v1fx = ((m1-m2) / (m1 + m2)) v1ix
v1i: initial velocity of ball 1 in the direction of the x-axis
v1f: final speed of ball 1 in the direction of the x-axis
like m1 >> m2 then
v1fx = v1ix
v1fx = 200 m / s (positive x direction)
So it is concluded that the ball 1 continues forward.
answer:
forward
part c part complete what is the final speed of the stationary ball if the incoming ball is much more massive than the stationary ball ?.
The shock is perfectly elastic. For this case, we have that the equation to find the final velocity of the stationary ball is given by
v2f = ((2m1) / (m1 + m2)) v1i
where,
v1i: initial speed of ball 1.
v2f: final speed of ball 2.
m1: mass of the ball 1
m2: mass of the ball 2
Then, as we know that m1 >> m2 then
v2f = ((2m1) / (m1) v1i
v2f = 2 * v1i
v2f = 2 * (200 m / s)
v2f = 400 m / s
answer
400m / s