Gasses because they are comperssible (plato)
The Tools Used to Measure Density
Scale. Mass is one of the most easily obtained measurements. ...
Graduated Cylinder. The most accurate way to determine an object's volume, especially in the case of an irregularly shaped object, is to immerse it in water and measure the amount of water it displaces. ...
Calculating Density. ...
Hydrometer. ...
The Value of Density.
B. Earth’s outer surface is cooler than its interior layers.
Explanation:
- The option given above is showing us that the temperature in the interior of the earth is higher than the temperature in the outer layer.
- There is travel of heat from the inner core of the earth to the earth's crust. Due to the loss of heat when it reaches the outer layer, there arises a temperature difference.
- The heat loss is due to the absorption of heat during its transfer. Hence, option B is the answer.
I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
Answer:
equilibrium position.
Explanation:
In simple harmonic motion , velocity v(t) is given by,
v(t) = -ω A sin(ωt + φ)
where
ω = angular velocity of the corresponding circular motion
A = amplitude
t = time
φ = the initial angle of the corresponding circular motion when the motion begin.
v (t) get maximized when sin value is maximized , i.e. sin
=1
The particle has maximum speed when it passes through the equilibrium position.