Yes it does, uh huh. It slows down as it rolls. That's a fact.
In order for the ball to roll forward, it has to push grass out of the way. That takes energy. To bend each blade of grass out of its way, the ball has to use a tiny bit of the kinetic energy that it has, so it gradually runs out of kinetic energy. When its kinetic energy is all gone, it stops moving.
Power=Work/Time
The work done is the energy required to lift the box, fighting the force of gravity. So, Work=Potential energy of the box at 10 meters.
W=PE=mgh=(60)(9.8)(10)=5880J
Finally,
P=W/T=(5880)/(5)=1176Watt
So the answer is 1176 Watts
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.
Answer: Kinetic Molecular Theory claims that gas particles are in continuous motion and completely demonstrate elastic collisions. Kinetic Molecular Theory can be used to describe the rules of both Charles and Boyle. A series of gas particles only has an average kinetic energy that is directly proportional to absolute temperature.
Weight = Mass * gravity
= 1470* 9.8 = 14406 N ≈ 14,400 N