Below is an attachment of the Lewis structure with the lowest formal charges.
The formal charge is the fictitious charge that an atom in a molecule would have if the electrons in the bonds were evenly distributed among the atoms. The nonbonding electrons on a neutral atom are subtracted from its valence electron count, which is then followed by the number of bonds that bind it to other atoms in the Lewis structure, to get the formal charge. This is another way to put it. When hyponitrous acid is oxidized in the atmosphere, nitric and nitrous acids are produced. By reducing a nitrate or nitrite by sodium amalgam in the presence of water, hyponitrite salts have been created.
Learn more about formal charge here-
brainly.com/question/11723212
#SPJ4
Answer:
FALSE
Since 0.385 < 0.526, the value for week 3 is accepted.
Explanation:
Qexp = (|Xq - Xₙ₋₁|)/w
where Xq is the suspected outlier; Xₙ₋₁ is the next nearest data point; w is the range of data
First, the data are arranged in decreasing order, from highest to lowest:
3. 5.6
2. 5.1
8. 5.1
1. 4.9
6. 4.9
5. 4.7
7. 4.5
4. 4.3
Xq = 5.6; Xₙ₋₁ = 5.1; w = 5.6 - 4.3 = 1.3
Qexp = (|5.6 - 5.1|)/1.3 = 0.385
From tables, at 95% confidence level, for n = 8, Qcrit = 0.526
Since 0.385 < 0.526, the value for week 3 is accepted.
Answer:The equilibrium constant for a given reaction is [concentration of products]/[concentration of reactants].
Explanation:
Equilibrium constant=[concentration of products]/[concentration of reactants]
The concentration of reactant molecules is maximum at time 0 and it decreases as the reaction proceeds, The concentration of product molecules increases.At equilibrium the concentration of reactants and products are equal.
All the changes would occur in accordance with the LeChateliers principle.
For the given reaction the following changes would occur:
a When CO is removed from the reaction mixture so the reaction would shift towards right that is in forward direction as we are decreasing the concentration of CO so the system would try to increase the concentration of CO and that can happen by more production of CO.
b Since the above reaction is an endothermic reaction so when we would be adding heat to the system that is when we would increase the temperature the reaction would shift forwards as more heat energy is absorbed by reactants to form more products.
c When more CO₂ is added so more amount of reactants are added to the system so the system would try to decrease the amount of reactants that is CO₂ and hence more amount of products would be formed.The reaction would shift in forward direction.
d Since this reaction is endothermic in nature so when we remove the heat from reaction hence even less amount of heat is present in the system and so the reaction shift in backward direction as the reaction cannot proceed without enough amount of heat.
Answer: A. To change the potential energy of the reactants.
Explanation:
Catalysts make such a breaking and rebuilding happen more efficiently. They do this by lowering the activation energy for the chemical reaction. Activation energy is the amount of energy needed to allow the chemical reaction to occur. The catalyst just changes the path to the new chemical partnership.
Answer:
Mass = 157.5 g
Explanation:
Given data:
Mass of CO needed = ?
Mass of Fe formed = 209.7 g
Solution:
Chemical equation:
3CO + F₂O₃ → 2Fe + 3CO₂
Number of moles of Fe:
Number of moles = mass/ molar mass
Number of moles = 209.7 g/ 55.85 g/mol
Number of moles = 3.75 mol
Now we will compare the moles of iron and carbon monoxide.
Fe : CO
2 : 3
3.75 ; 3/2×3.75 = 5.625 mol
Mass of CO:
Mass = number of moles × molar mass
Mass = 5.625 mol × 28 g/mol
Mass = 157.5 g