Answer:
<em>The momentum of the car is 35,000 kg.m/s</em>
Explanation:
<u>Momentum</u>
Momentum is often defined as <em>mass in motion.</em>
Since all objects have mass, if it's moving, then it has momentum. It can be calculated as the product of the mass by the velocity of the object:

If only magnitudes are considered:
p = mv
The car has a mass of m=1,000 kg and travels at v=35 m/s. Calculating its momentum:
p = 1,000 kg * 35 m/s
p = 35,000 kg.m/s
The momentum of the car is 35,000 kg.m/s
1) Frequency: 
the energy of the photon absorbed must be equal to the ionization enegy of the atom, which is

The energy of a photon is given by

where
is the Planck's constant. By using the energy written above and by re-arranging thsi formula, we can calculate the frequency of the photon:

2) Wavelength: 91.2 nm
The wavelength of the photon can be found from its frequency, by using the following relationship:

where
is the speed of light and f is the frequency. Substituting the frequency, we find

<h2>
Speed of motorboat is 36 km/hr and speed of current is 4 km/hr.</h2>
Explanation:
Let speed of motor boat be m and speed of current be c.
A motorboat traveling with a current can go 160 km in 4 hours.
Distance = 160 km
Time = 4 hours
Speed = m + c
We have
Distance = Speed x Time
160 = (m+c) x 4
m + c = 40 --------------------- eqn 1
Against the current it takes 5 hours to go the same distance.
Distance = 160 km
Time = 5 hours
Speed = m - c
We have
Distance = Speed x Time
160 = (m-c) x 5
m - c = 32 --------------------- eqn 2
eqn 1 + eqn 2
2m = 40 + 32
m = 36 km/hr
Substituting in eqn 1
36 + c = 40
c = 4 km/hr
Speed of motorboat is 36 km/hr and speed of current is 4 km/hr.
Answer:
61.33 Kg
Explanation:
From the question given above, the following data were obtained:
Distance = 1×10² m
Time = 9.5 s
Kinetic energy (KE) = 3.40×10³ J
Mass (m) =?
Next, we shall determine the velocity Leroy Burrell. This can be obtained as follow:
Distance = 1×10² m
Time = 9.5 s
Velocity =?
Velocity = Distance / time
Velocity = 1×10² / 9.5
Velocity = 10.53 m/s
Finally, we shall determine the mass of Leroy Burrell. This can be obtained as follow:
Kinetic energy (KE) = 3.40×10³ J
Velocity (v) = 10.53 m/s
Mass (m) =?
KE = ½mv²
3.40×10³ = ½ × m × 10.53²
3.40×10³ = ½ × m × 110.8809
3.40×10³ = m × 55.44045
Divide both side by 55.44045
m = 3.40×10³ / 55.44045
m = 61.33 Kg
Thus, the mass of Leroy Burrell is 61.33 Kg
Answer:
The uneven heating results in some of the atmosphere to be warmer than other parts and changes in volume and pressure which result in updrafts and can cause thunderstorms and other violent weather.
Explanation:
Generation of wind