Answer: 
Explanation:
This problem can be solved by the following equation:

Where:
is the change in kinetic energy
is the electric potential difference
is the electric charge
Finding
:


Finally:

Answer:
The highest vertical position is where your maximum potential energy lies. At the highest altitude point of course ! This is when the kinetic energy is only due to horizontal motion (since the vertical component reaches zero).
Explanation:
i looked it up ok
Answer:

Explanation:
Our values are,

We have all the values to apply the law of linear momentum, however, it is necessary to define the two lines in which the study will be carried out. Being an intersection the vehicle of mass m_1 approaches through the X axis, while the vehicle of mass m_2 approaches by the y axis. In the collision equation on the X axis, we despise the velocity of object 2, since it does not come in this direction.

For the particular case on the Y axis, we do the same with the speed of object 1.

By taking a final velocity as a component, we can obtain the angle between the two by relating the equations through the tangent

Replacing in any of the two functions, given above, we will find the final speed after the collision,



For a cylinder that has both ends open resonant frequency is given by the following formula:

Where n is the resonance node, v is the speed of sound in air and L is the length of a cylinder.
The fundamental frequency is simply the lowest resonant frequency.
We find it by plugging in n=1:

To find what harmonic has to be excited so that it resonates at f>20Hz we simply plug in f=20 Hz and find our n:

We can see that any resonant frequency is simply a multiple of a base frequency.
Let us find which harmonic resonates with the frequency 20 Hz:

Since n has to be an integer, final answer would be 323.
Answer:
The net torque is 0.4962 N m
Explanation:
please look at the solution in the attached Word file