We know that P1V1 = P2V2, if there is a constant pressure, then the P1 and P2 can cancel out, so it is V1=V2 that is whats left.
Answer:
F = 4000 N
Explanation:
given,
mass of rocket (M)= 5000 Kg
10 Kg gas burns at speed (m)= 4000 m/s
time = 10 s
average force = ?
at the end the rocket is at rest
by conservation of momentum
M v + m v' = 0
5000 x v - 10 x 4000 = 0
5000 v = 40000
v = 8 m/s
speed of rocket = 8 m/s
now,
we know
change in momentum = F x Δ t


F = 4000 N
Hence, the average force applied to the rocket is equal to F = 4000 N
It is most accurate to say that body mass index (BMI) provides information about an individual's height-weight ratio. The correct answer is B.
The solution for this problem is:
r = [(2.90 + 0.0900t²) i - 0.0150t³ j] m/s²
this is for t in seconds and r in meters
v = dr/dt = [0.180t i - 0.0450t² j] m/s²
tan(-36.0º) = -0.0450t² / 0.180t
0.7265 = 0.25t
t = 2.91 s is the velocity vector of the insect
(5 mi/hr) x (1hr/60min) x (10min) = 5 x 10 / 60 = <em>5/6 mile</em>
(5/6 mile) x (1,760 yd/mile) = <em>1,466 and 2/3 yards</em>