Assuming that the densities of the gases are:
density of air, ρ1 = 1.29 kg / m^3
density of helium, ρ2 = 0.179 kg / m^3
Since buoyant force and weight are two forces that are in
opposite direction (buoyant force is up while weight is down), therefore equate
the two:
buoyant force = weight
m g = (800 + m1) g
where m is the mass of buoyancy, g is gravity and m1 is
the maximum mass of the cargo
m = 800 + m1
We know that mass is also expressed as:
m = ρ V
where ρ is density of gas and V is volume of the sphere
Since there are two interacting gases here, therefore m
is:
m = (ρ1 – ρ2) V
Therefore:
(ρ1 – ρ2) V = 800 + m1
(1.29 – 0.179) (4π/3) (8.35m)^3 = 800 + m1
2709.33 = 800 + m1
m1 = 1,909.33 kg
Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e 
where
is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation:
Important bc it makes it more effective, the specific rate makes or breaks the fitness. Frequency is important to allow your body to rebuild and repair the damage from working out, it allows the body to adapt and time for rest/ healing. Intensity depends on how much your body breaks so the recover time and frequency must be adjusted. Time effects because of the distance between frequencies which plays a role.
The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.
First, we determine how long the parcel will fall using:
s = ut + 1/2 at²
where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity.
5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds
A