Answer:
14 cm
Explanation:
F = (frac{uv}{u – v})
F = +ve
v = -ve
30 = (frac {25 {times} (-v)}{25 – (-v)})
v = (frac {25 {times} (-v)}{25+v})
v = 14cm
(Note that either negative or positive values go to show the positioning and hence, they are not a strong necessity in your final answer.)
So happy that i could help you!
Now this question could turn out to be easy for you!!
Answer:
The angular displacement of the blade is 576,871.2 radians
Explanation:
Given;
angular speed of the Helicopters rotor blades, ω = 510 rpm (revolution per minute)
time of motion, t = 3 hours
The angular speed of the Helicopters rotor blades in radian per second is given as;

The angular displacement in radian is given as;
θ = ωt
where;
t is time in seconds
θ = (53.414)(3 x 60 x 60)\\
θ = 576,871.2 radians
Therefore, the angular displacement of the blade is 576,871.2 radians
Answer:
<h3>The answer is 500 km </h3>
Explanation:
The distance covered by an object given it's velocity and time taken can be found by using the formula
<h3>distance = average velocity × time</h3>
From the question
average speed = 250 km/h
time = 2 hrs
We have
distance = 250 × 2
We have the final answer as
<h3>500 km</h3>
Hope this helps you
Answer:
Explanation:
Given,
- Work done by the rope 900 m/s.
- Angle of inclination of the slope =

- Initial speed of the skier = v = 1.0 m/s
- Length of the inclined surface = d = 8.0 m
part (a)
The rope is doing the work against the gravity on the skier to uplift up to the inclined surface. Therefore the work done by the rope is equal to the work done on the skier due to the gravity

In both cases the height attained by the skier is equal. and the work done by gravity does not depend upon the speed of the skier.
part (b)
- Initial speed of the skier = v = 1.0 m/s.
Rate of the work done by the rope is power of the rope.

Part (c)
- Initial speed of the skier = v = 2.0 m/s.
Rate of the work done by the rope is power of the rope.

Answer:
Explanation:
v= u + at
v is final velocity , u is initial velocity . a is acceleration and t is time
Initial velocity u = 0 . Putting the given values in the equation
v = 0 + g sin 18 x 3.5
= 10.6 m /s