Answer:
The amount of electrons that flow in the given time is 3.0 C.
Explanation:
An electric current is defined as the ratio of the quantity of charge flowing through a conductor to the time taken.
i.e I =
...................(1)
It is measure in Amperes and can be measured in the laboratory by the use of an ammeter.
In the given question, I = 1.5A, t = 2s, find Q.
From equation 1,
Q = I × t
= 1.5 × 2
= 3.0 Coulombs
The amount of electrons that flow in the given time is 3.0 C.
Answer:
181.48 N
Explanation:
Calculate the area :
Area = pi * r² ;
pi = 3.14 ; r1 = 90cm /100 = 0.9m ; r2 = 10/100 = 0.1m
Area 1, A1 = 3.14 * 0.1² = 0.0314 m²
Area 2, A2 = 3.14 * 0.9² = 2.5434 m²
Force, F = mass * acceleration due to gravity
F2 = 1500 * 9.8 = 14700 N
Force 1 / Area 1 = Force 2 / Area 2
Force 1 = (Force 2 / Area 2), * Area 1
Force 1 = (14700 / 2.5434) * 0.0314
Force = 5779.6650 * 0.0314
= 181.48 N
I believe it would be false
Answer:
Explanation:
The efficiency of a refrigerator is defined in the terms of coefficient of performance (COP).
The ratio of amount of heat in cold reservoir to the work done is termed as the COP.
COP = QL / W
COP = T2 / (T1 - T2)
Where, T1 be the temperature of hot reservoir, T2 be the temperature of cold reservoir.
Answer:
The resistance of the inductor at resonance is 258.76 ohms.
Explanation:
Given;
resistance of the resistor, R = 305 ohm
capacitance of the capacitor, C = 1.1 μF = 1.1 x 10⁻⁶ F
inductance of the inductor, L = 42 mH = 42 x 10⁻³ H = 0.042 H
At resonance the inductive reactance is equal to capacitive reactance.

Where;
F₀ is the resonance frequency

The inductive reactance is given by;

Therefore, the resistance of the inductor at resonance is 258.76 ohms.