Answer:
The magnitude of an earthquake is 5.6.
Explanation:
The magnitude of an earthquake can be found as follows:

Where:
I: is the intensity of the earthquake = 37.25 cm
S: is the intensity of a standard earthquake = 10⁻⁴ cm
Hence, the magnitude is:

Therefore, the magnitude of an earthquake is 5.6.
I hope it helps you!
The equation that would allow us to calculate for the acceleration given the distance is written below,
a = (Vf² - Vo²) / 2d
where a is the acceleration, Vf is the final velocity, Vo is the initial velocity, and d is distance.
Substituting the known values,
a = ((84 ft/s)² - (72 ft/s)²) / 2(180 ft) = 5.2 ft/s²
Then, the equation that would relate the initial velocity, distance, acceleration and time is calculated through the equation,
d = Vot + 0.5at²
Substituting the known values,
180 = 72(t) + 0.5(5.2)(t²)
The value of t from the equation is 2.3 s
<em>ANSWER: 2.3 s</em>
The answer is False. Permafrost does not thaws briefly in the summer since Permafrost is all year round. As global temperature rise, the amount that frozen soil that melts is increasing. With warmer temperature, snow and ice that used to reflect sunlight is disappearing. Thus, the newly exposed soil absorbs heat from the sunlight, and encourages melting.
Answer:
175 N/m
Explanation:
Given:
Force = F= 14.0 N
Distance = x = 8.00 cm = 0.08 m
To find:
spring constant
Solution:
spring constant is calculated by using Hooke's law:
k = F/x
Putting the values in above formula:
k = 14.0 / 0.08
k = 175 N/m
Answer:
<em>the minimum speed that the ball must have so that the cord does not become slack is</em> <em>2.02 m/s.</em>
<em></em>
Explanation:
In order to avoid slack, the centripetal force of the ball must equal its weight at the top of the circle. Therefore,
F_c = F_g
m v² / r = m g
v² = g r
v = √[g r]
v = √[(9.8 m/s²)(0.417 m)]
<em>v = 2.02 m/s </em>
Therefore,<em> the minimum speed that the ball must have so that the cord does not become slack is</em> <em>2.02 m/s.</em>