Answer: Charge = -2.4x10^-9 Coulombs
Explanation:
The charge of one electron is e = -1.6x10^-19 C
Then, the charge of 1.5 x 10^10 electrons is equal to 1.5 x 10^10 times the charge of one electron:
Here i will use the relation (a^b)*(a^c) = a^(b + c)
Charge = ( 1.5 x 10^10)*( -1.6x10^-19 C) = -2.4x10^(10 - 19) C
Charge = -2.4x10^-9 C
1/2mv^2
1/2x12x10^2=600J
The kinetic energy is 600J
To solve this problem we will apply the linear motion kinematic equations. With the data provided we will calculate the time of the first object to fall. Later we will get the time difference between the two. This difference will allow us to find the free fall distance. Through the distance we will find the initial velocity, that is,



The second object is thrown downward at one second later and it meets the first object at the water is


The distance of the object will travel due to free fall acceleration is



The distance of the object will travel due to its initial velocity is




Therefore the initial speed of the second object is 21.06m/s
A pulsar, or a pulsing star, is a highly magnetized neutron star that emits a beam of electromagnetic radiation. So they blink when they are rotating because the beam of radiation they emit can only be seen when it is facing the Earth.
Hope this helps.