Answer:
3x10⁴v
Explanation:
Using
Wavelength= h/ √(2m.Ke)
880nm = 6.6E-34/√ 2.9.1E-31 x me
Ke= 6.6E-34/880nm x 18.2E -31.
5.6E-27/18.2E-31
= 3 x 10⁴ Volts
Answer:
The act of using senses or tools to gather information is called <em>Obser</em><em>vation</em><em>.</em>
The kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.
To find the answer, we have to know about the Lorentz transformation.
<h3>What is its kinetic energy as measured in the Earth reference frame?</h3>
It is given that, an alien spaceship traveling at 0.600 c toward the Earth, in the same direction the landing craft travels with a speed of 0.800 c relative to the mother ship. We have to find the kinetic energy as measured in the Earth reference frame, if the landing craft has a mass of 4.00 × 10⁵ kg.

- Let us consider the earth as S frame and space craft as S' frame, then the expression for KE will be,

- So, to
find the KE, we have to find the value of speed of the approaching landing craft with respect to the earth frame. - We have an expression from Lorents transformation for relativistic law of addition of velocities as,

- Substituting values, we get,


Thus, we can conclude that, the kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.
Learn more about frame of reference here:
brainly.com/question/20897534
SPJ4
Refer to the diagram shown below.
W₁ = (4 kg)*(9.8 m/s²) = 39.2 N
W₂ = (1 kg)*(9.8 m/s²) = 9.8 N
The normal reaction on the 4-kg mass is
N = (39.2 N)*cos(25°) = 35.5273 N
The force acting down the inclined plane due to the weight is
F = (39.2 N)*sin(25°) = 16.5666 N
The net force that accelerates the 4-kg mass at a m/²s down the plane is
F - W₂ = (4 kg)*(a m/s²)
4a = 16.5666 - 9.8
a = 1.6917 m/s²
Answer: 1.69 m/s² (nearest hundredth)
When distance<span> is increased the amount of </span>force<span> needed will depend on the </span>mass<span> of the object. </span>