Answer:
It would take less time, because having a lower temperature of latent heat means that at a lower temperature it merges, therefore the closer it will be to the temperature of solification which is 0 degrees Celsius or Celsius ... It is then that it would solidify in less time than water
Explanation:
By acting and having all the same properties as water except for latent heat, it considers that the solidification temperature is 0 degrees Celsius like water.
It can be a compound or a single element. An element is a pure substance that cannot be separated into simpler substances by chemical or physical means. There are about 117 elements, but carbon, hydrogen, nitrogen and oxygen are only a few that make up the largest portion of Earth.
hopefully that helps
Atom <span>Appears in these related concepts: Early Ideas about Atoms, Stable Isotopes, and Atomic Theory of Matter</span>balanced equation <span>Appears in these related concepts: Effect of a Common Ion on Solubility, Reaction Stoichiometry, and Mole-to-Mole Conversions</span>bond <span>Appears in these related concepts: Factors Affecting the Price of a Bond, Current Maturities of Long-Term Debt, and Preferred Stock</span>chemical reaction <span>Appears in these related concepts: Periodic Table Position and Electron Configuration, Free Energy Changes for Nonstandard States, and Physical and Chemical Changes to Matter</span>chemistry <span>Appears in these related concepts: Description of the Hydrogen Atom, Mass-to-Mole Conversions, and General Trends in Chemical Properties</span>element <span>Appears in these related concepts: Development of the Periodic Table, Elements and Compounds, and The Periodic Table</span>energy <span>Appears in these related concepts: Surface Tension, Energy Transportation, and Introduction to Work and Energy</span>gas <span>Appears in these related concepts: Oxidation Numbers of Metals in Coordination Compounds, Irreversible Addition Reactions, and Microstates and Entropy</span>isolated system <span>Appears in these related concepts: Conservation of Mechanical Energy, Internal Energy, and Comparison of Enthalpy to Internal Energy</span>liquid <span>Appears in these related concepts: Overview of Atomic Structure, Types of Synthetic Organic Polymers, and Three States of Matter</span>matter <span>Appears in these related concepts: Physical and Chemical Properties of Matter, Introduction: Physics and Matter, and The Study of Chemistry</span>mole <span>Appears in these related concepts: Avogadro's Number and the Mole, Molar Mass of Compounds, and Concept of Osmolality and Milliequivalent</span>solid <span>Appears in these related concepts: Extractive Metallurgy, Metagenomics, and Some Polycyclic Heterocycles</span>system <span>Appears in these related concepts: Definition of Management, <span>Local, regional, national, international, and global marketers </span>, and Additional cost and energy saving suggestions for pumps</span>
<span />
Answer: 3.75 M
Explanation:
400 mL = 0.4 L
NaOH has a molar mass of around 40 g/mol.
= 1.5 moles
Molarity =
= 3.75 M
Answer:
75000 Hz
Explanation:
f = V / λ (f= frequency, v=velocity of wave, lambda= wavelength)
alternatively, f = c / λ (f= frequency, c= speed of light- 3.00x10^8 m/s, lambda= wavelength)
f= [3.00x10^8 m/s]/[4000 m]
=75000 Hz