1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
3 years ago
14

Electrical wire with a diameter of .5 cm is wound on a spool with a radius of 30 cm and a height of 24 cm.

Physics
1 answer:
kow [346]3 years ago
6 0

Answer:

a)   # lap = 301.59 rad , b)   L = 90.48 m

Explanation:

a) Let's use a direct proportions rule (rule of three). If one turn of the wire covers 0.05 cm, how many turns do you need to cover 24 cm

          # turns = 1 turn (24 cm / 0.5 cm)

         # laps = 48 laps

Let's reduce to radians

        # laps = 48 laps (2 round / 1 round)

       # lap = 301.59 rad

b) Each lap gives a length equal to the length of the circle

          L₀ = 2π R

          L = # turns L₀

          L = # turns 2π R

          L = 48 2π 30

          L = 9047.79 cm

          L = 90.48 m

You might be interested in
How could rescue workers use squeezing or compressing to get energy to their flashlights during rescue missions?
Neko [114]

Answer:

Explanation:

During rescue missions, different types of energy can be devices for flashlight, this could be human powered energy such as squeezing or compressing. In flashlight electrical energy is converted to light and thermal energy.

A squeezing or compressing to get energy for flashlight can be regarded as "DYNAMO PROCESS" it involves spinning of "fly wheels" into the flashlight through consistent squeezing ,which is connected to a dynamo(Dynamo supply electrical current). Hence the needed light is seen on the bulb of the flashlight.

3 0
3 years ago
Which factors could be potential sources of error in the experiment? check all that apply.
Vadim26 [7]

(A)energy lost in the lever due to friction

(C) visual estimation of height of the beanbag

(E)position of the fulcrum for the lever affecting transfer of energy

6 0
3 years ago
Read 2 more answers
Giving brainiest to correct answer.
mixas84 [53]

Answer:

5.33\ m/s

Explanation:

We\ know\ that,\\Momentum=Mass*Velocity\\p=mv\\Hence,\\Lets\ first\ consider\ the\ case\ of\ the\ two\ balls\ 'Before\ Collision':\\\\Mass\ of\ the\ green\ ball=0.2\ kg\\Initial\ Velocity\ of\ the\ green\ ball=5\ m/s\\Initial\ Momentum\ of\ the\ green\ ball=5*0.2=1\ kg\ m/s\\\\Mass\ of\ the\ pink\ ball=0.3\ kg\\Initial\ Velocity\ of\ the\ pink\ ball=2\ m/s\\Initial\ Momentum\ of\ the\ pink\ ball=0.3*2=0.6\ kg\ m/s\\\\Total\ momentum\ of\ both\ the\ balls\ 'Before\ Collision'=1+0.6=1.6\ kg\ m/s

Hence,\\Lets\ now\ consider\ the\ case\ of\ the\ two\ balls\ 'After\ Collision':\\\\Mass\ of\ the\ green\ ball=0.2\ kg\\Final\ Velocity\ of\ the\ green\ ball=0\ m/s\\Final\ Momentum\ of\ the\ green\ ball=0\ kg\ m/s\\\\Mass\ of\ the\ pink\ ball=0.3\ kg\\Final\ Velocity\ of\ the\ pink\ ball=v\ m/s\\Final\ Momentum\ of\ the\ pink\ ball=0.3*v=0.3v\ kg\ m/s\\\\Total\ momentum\ of\ both\ the\ balls\ 'After\ Collision'=0+0.3v=0.3v\ kg\ m/s

As\ we\ know\ that,\\Through\ the\ law\ of\ conservation\ of\ momentum,\\In\ an\ isolated\ system:\\Total\ Momentum\ Before\ Collision=Total\ Momentum\ After\ Collision\\Hence,\\1.6=0.3v\\v=\frac{1.6}{0.3}=5.33\ m/s

5 0
3 years ago
The rocket's acceleration has components \(a_{x}(t)= \alpha t^{2}\) and \(a_{y}(t)= \beta - \gamma t\), where \(\alpha = 2.50 {\
lbvjy [14]
 it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt 
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x} 
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y} 
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ] 
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt 
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases 
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume 
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ] 
5 0
3 years ago
It is dangerous to stand near the railway leak when train passing by,why?​
4vir4ik [10]

Answer:

Because a person may be pulled in the direction of the moving train. Thereby causing accident

Explanation:

According to Daniel Bernoulli's theorem, he was widely known as a Mathematician. He stated that due to the higher velocity of a moving train, there is higher kinetic energy in terms of volume around it, while the air pressure between the person and the train becomes lower.

As a result, a person near a moving train may be pulled in the direction of the moving train. Thereby causing accidents that may lead to death.

3 0
3 years ago
Other questions:
  • Suppose a person whose mass is m is being held up against the wall with a constant tangential velocity v greater than the minimu
    11·1 answer
  • A system releases 20 J of heat into its surroundings while the surroundings
    5·1 answer
  • What is the best example of rotational motion
    7·2 answers
  • A helium-neon laser (λ = 633 nm) illuminates a single slit and is observed on a screen 1.50 m behind the slit. The distance betw
    11·1 answer
  • True or false : In crystalline solids the particles are not arranged in a regular pattern
    14·2 answers
  • The soft underbelly of the Axis referred to
    10·1 answer
  • What is true of all places on earth during the equinoxes
    12·2 answers
  • What is the path that an electric current follows called
    11·2 answers
  • Select the correct answer.
    12·1 answer
  • A 3 kg brick falls freely from rest from the roof of a building. How far will the brick fall in the first 2.0 seconds?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!