Answer:
Explanation:
First of all, we analyze the system of blocks before starting to move.
Hence, the incline angle θ for which both blocks begin to slide is 10.20°.
Now, if we do a free body diagram of block A we have that after the block moves, the spring force must be taken into account.

Where:



Therefore, the required stretch or compression in the connecting spring is 0.10 ft.
I hope it helps you!
Answer:
force is the answer because force is pushing the item
Answer:
w = 0.886 rad / s
Explanation:
Angular and linear variables are related
a = α r
where a is the linear acceleration, α the angular acceleration and r the radius of gyration
α = a / r
the angular velocity we can find it
w² = w₀² + 2 α θ
the initial angular velocity is zero, the angles to be horizontal is
θ = π/ 2 rad
we substitute
w = √ 2 a / r θ
we calculate
w = √ (2 3/12 π/2)
w = 0.886 rad / s
I think the answer is 3 miles because its storming now where I live
Answer:
Explanation:
Given that,.
A house hold power consumption is
475 KWh
Gas used is
135 thermal gas for month
Given that, 1 thermal = 29.3 KWh
Then,
135 thermal = 135 × 29.3 = 3955.5 KWh
So, total power used is
P = 475 + 3955.5
P =4430.5 KWh
Since 1 hr = 3600 seconds
So, the energy consumed for 1hr is
1KW = 1000W
P = energy / time
Energy = Power × time
E = 4430.5 KWhr × 1000W / KW × 3600s / hr
E = 1.595 × 10^10 J
So, using Albert Einstein relativity equation
E = mc²
m = E / c²
c is speed of light = 3 × 10^8 m/s
m = 1.595 × 10^10 / (3 × 10^8)²
m = 1.77 × 10^-7 kg
Then,
1 kg = 10^6 mg
m = 1.77 × 10^-7 kg × 10^6 mg / kg
m = 0.177mg
m ≈ 0.18 mg