The answer would be center of mass, B
By definition,
q = 1.22y/D
Where,
q = min. angle
y = wavelength
D = Aperture diameter = diameter of the antenna
At distance "x" from the antenna,
L =xq = 1.22xy/D
Where, L = Min. distance
But, y =c/f = (3*10^8)/(16*10^9) = 0.01875 m
Substituting;
L = 1.22*5*10^3*0.01875/2.1 = 54.46 m
Answer:
a) I = 3.63 W / m²
, b) I = 0.750 W / m²
Explanation:
The intensity of a sound wave is given by the relation
I = P / A = ½ ρ v (2π f
)²
I = (½ ρ v 4π² s_{max}²) f²
a) with the initial condition let's call the intensity Io
cte = (½ ρ v 4π² s_{max}²)
I₀ = cte s² f₀²
I₀ = cte 10 6
If frequency is increase f = 2.20 10³ Hz
I = constant (2.20 10³) 2
I = cte 4.84 10⁶
let's find the relationship of the two quantities
I / Io = 4.84
I = 4.84 Io
I = 4.84 0.750
I = 3.63 W / m²
b) in this case the frequency is reduced to f = 0.250 10³ Hz and the displacement s = 4 s or
I = cte (f s)²
I = constant (0.250 10³ 4)²
I = cte 1 10⁶
the relationship
I / Io = 1
I = Io
I = 0.750 W / m²
41.5 is the answer that i got. hope this helps!
Its a thermometer . i hope this helps you