The coriolis effect was discovered in the 19th century by Gaspard. C. Coriolis. It simply relates to anything that moves freely on the surface of the earth including apparent curvature global winds and ocean currents.
This curvature is mainly due to the rotation of the earth around its axis.
Answer:
<span>A.) The rotation of Earth on its axis</span>
Answer:
10 m/s^2
Explanation:
Equation: F = ma.
a = acceleration
m = mass
F = force
Because we are trying to find acceleration instead of force we want to rearrange the equation to solve for a which is F/m = a.
F = 20
m = 2
a = ?
a = F/m
a = 20/2
a = 10 m/s^2
Answer:
Circle
Explanation:
When a charged particle is in motion in a region with magnetic field, the particle experiences a force whose magnitude is given by

where
q is the charge
v is the velocity of the particle
B is the strength of the magnetic field
is the angle between the directions of v and B
In this problem, the velocity of the particle is perpendicular to the magnetic field, so

and the formula reduces to

Also, the direction of this force is perpendicular to the direction of motion of the particle. This means that as the charge moves in the region of the magnetic field, the force acting on it acts as a centripetal force: therefore, the particle will start moving by unifom circular motion, with constant speed (because the magnetic force does no work on the particle, since it is perpendicular to the direction of motion).
So, the path of the particle will be a circle.
The largest mass is 4.7 x 10³⁰ kg and the smallest mass is 5 x 10²⁹ kg.
The given parameters;
- <em>distance between the two black holes, r = 10 AU = 1.5 x 10¹² m</em>
- <em>gravitational force between the two black holes, F = 6.9 x 10²⁵ N.</em>
- <em>combined mass of the two black holes = 5.20 x 10³⁰ kg</em>
The product of the two masses is calculated from Newton's law of universal gravitational as follows;

The sum of the two masses is given as;
m₁ + m₂ = 5.2 x 10³⁰ kg
m₂ = 5.2 x 10³⁰ kg - m₁
The first mass is calculated as follows;
m₁(5.2 x 10³⁰ - m₁) = 2.328 x 10⁶⁰
5.2 x 10³⁰m₁ - m₁² = 2.328 x 10⁶⁰
m₁² - 5.2 x 10³⁰m₁ + 2.328 x 10⁶⁰ = 0
<em>solve the quadratic equation using formula method</em>;
a = 1, b =- 5.2 x 10³⁰, c = 2.328 x 10⁶⁰

The second mass is calculated as follows;
m₂ = 5.2 x 10³⁰ kg - m₁
m₂ = 5.2 x 10³⁰ kg - 4.7 x 10³⁰ kg
m₂ = 5 x 10²⁹ kg
or
m₂ = 5.2 x 10³⁰ kg - 4.9 x 10²⁹ kg
m₂ = 4.7 x 10³⁰ kg
Thus, the largest mass is 4.7 x 10³⁰ kg and the smallest mass is 5 x 10²⁹ kg.
Learn more here:brainly.com/question/9373839