Carbohydrates,Lipids,Proteins,Nucleic acids,<span>Organic Compounds</span>
Explanation:
The bond between C and O in CO₂ and O and H in H₂O
Therefore,
Option C is correct✔
The pH of the solution is 2.54.
Explanation:
pH is the measure of acidity of the solution and Ka is the dissociation constant. Dissociation constant is the measure of concentration of hydrogen ion donated to the solution.
The solution of C₆H₂O₆ will get dissociated as C₆HO₆ and H+ ions. So the molar concentration of 0.1 M is present at the initial stage. Lets consider that the concentration of hydrogen ion released as x and the same amount of the base ion will also be released.
So the dissociation constant Kₐ can be written as the ratio of concentration of products to the concentration of reactants. As the concentration of reactants is given as 0.1 M and the concentration of products is considered as x for both hydrogen and base ion. Then the
![K_{a}=\frac{[H^{+}][HB] }{[reactant]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BHB%5D%20%7D%7B%5Breactant%5D%7D)
[HB] is the concentration of base.


Then
![pH = - log [x] = - log [ 0.283 * 10^{-2}]\\ \\pH = 2 + 0.548 = 2.54](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5Bx%5D%20%3D%20-%20log%20%5B%200.283%20%2A%2010%5E%7B-2%7D%5D%5C%5C%20%5C%5CpH%20%3D%202%20%2B%200.548%20%3D%202.54)
So the pH of the solution is 2.54.
Answer:
The answer is Relative plenitude alludes to the amount of a specific isotope is available in a given measure of test.
Explanation:
The 'relative plenitude' of an isotope implies the level of that specific isotope that happens in nature. Most components are comprised of a blend of isotopes. The total of the rates of the particular isotopes must indicate 100%. The relative nuclear mass is the weighted normal of the isotopic masses. The percent plenitude of every sort of sweets reveals to you what number of every sort of Aufbau there are in each 100 CANDIES. Percent wealth is additionally relative plenitude. This is only a method for giving us a photo on which kind exists all the more every now and again.