The answer is B particles combine into a large amount of engery.
Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL
Initial volume is 8.5. Could I get best answer??
Answer:
True
Explanation:
The gaseous state is characterized in that the cohesion forces are usually null, in which the particles have their maximum mobility. The particles tend to occupy all the available volume, so their shape and volume are variable. The gaseous state is a dispersed state of matter, which means that the molecules are separated by distances much larger than the diameter of the gas molecules.
Answer:
1.1713 moles
Explanation:
RFM of N2O5= (14*2)+(16*4)=108
Moles of N2O5= Mass/RFM= 63.25/108= 0.5856 moles
Mole ratio of N2O5:NO2 = 2:4
Therefore moles of NO2= 4/2*0.5856= 1.1713 moles