1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
13

In a jump spike, a volleyball player slams the ball from overhead and toward the opposite floor. controlling the angle of the sp

ike is difficult. suppose a ball is spiked from a height of 2.10 m with an initial speed of 17.0 m/s at a downward angle of 15.0°. how much farther on the opposite floor would it have landed if the downward angle were, instead, 7.0°?
Physics
1 answer:
8090 [49]3 years ago
6 0
V ( initial ) = 20 m/s
h = 2.30 m
h = v y * t + g t ² / 2
d = v x * t
1 ) At α = 18°:
v y = 20 * sin 18° = 6.18 m/s
v x = 20 * cos 18° = 19.02 m/ s
2.30 = 6.18 t + 4.9 t²
4.9 t² + 6.18 t - 2.30 = 0
After solving the quadratic equation ( a = 4.9, b = 6.18, c = - 2.3 ):
t 1/2 = (- 6.18 +/- √( 6.18² - 4 * 4.9 * (-2.3)) ) / ( 2 * 4.9 )  
t = 0.3 s
d 1 = 19.02 m/s * 0.3 s = 5.706 m
2 ) At  α = 8°:
v y = 20* sin 8° = 2.78 m/s
v x = 20* cos 8° = 19.81 m/s
2.3 = 2.78 t + 4.9 t² 
4.9 t² + 2.78 t - 2.3 = 0
t = 0.46 s
d 2 = 19.81 * 0.46 = 9.113 m
The distance is:
d 2 - d 1 = 9.113 m - 5.706 m = 3.407 m

GOOD LUCK AND HOPE IT HELPS U
You might be interested in
A force of constant magnitude pushes a box up a vertical surface, as shown in the figure.
Ray Of Light [21]

The work done on the box by the applied force is zero.

The work done by the force of gravity is 75.95 J

The work done on the box by the normal force is 75.95 J.

<h3>The given parameters:</h3>
  • Mass of the box, m = 3.1 kg
  • Distance moved by the box, d = 2.5 m
  • Coefficient of friction, = 0.35
  • Inclination of the force, θ = 30⁰

<h3>What is work - done?</h3>
  • Work is said to be done when the applied force moves an object to a certain distance

The work done on the box by the applied force is calculated as;

W = Fd cos(\theta)\\\\W = (ma)d \times cos(\theta)

where;

a is the acceleration of the box

The acceleration of the box is zero since the box moved at a constant speed.

W = (0) d \times cos(30)\\\\W = 0 \ J

The work done by the force of gravity is calculated as follows;

W = mg \times d\\\\W = 3.1 \times 9.8 \times 2.5 \\\\W = 75.95 \ J

The work done on the box by the normal force is calculated as follows;

W = (F_n) \times d\\\\W = (mg + F sin\theta) \times d\\\\W = (mg + 0) \times d\\\\W = mgd\\\\W = 3.1 \times 9.8 \times 2.5\\\\W = 75.95 \ J

Learn more about work done here: brainly.com/question/8119756

8 0
2 years ago
What is a vernier caliper used for?​
iris [78.8K]

me ajudem por favor pra agora de noite

5 0
3 years ago
The pressure drop needed to force water through a horizontal 1-in diameter pipe if 0.60 psi for every 12-ft length of pipe. Dete
oksian1 [2.3K]

Answer:

The shear stress at a distance 0.3-in away from the pipe wall is 0.06012lb/ft²

The shear stress at a distance 0.5-in away from the pipe wall is 0

Explanation:

Given;

pressure drop per unit length of pipe = 0.6 psi/ft

length of the pipe = 12 feet

diameter of the pipe = 1 -in

Pressure drop per unit length in a circular pipe is given as;

\frac{\delta P}{L} = \frac{2 \tau}{r} \\\\

make shear stress (τ) the subject of the formula

\frac{\delta P}{L} = \frac{2 \tau}{r} \\\\\tau = \frac{\delta P *r}{2L}

Where;

τ is the shear stress on the pipe wall.

ΔP is the pressure drop

L is the length of the pipe

r is the distance from the pipe wall

Part (a) shear stress at a distance of  0.3-in away from the pipe wall

Radius of the pipe = 0.5 -in

r = 0.5 - 0.3 = 0.2-in = 0.0167 ft

ΔP = 0.6 psi/ft

ΔP, in lb/ft² = 0.6 x 144 = 86.4 lb/ft²

\tau = \frac{\delta P *r}{2L}  = \frac{86.4 *0.0167}{2*12} =0.06012 \ lb/ft^2

Part (b) shear stress at a distance of  0.5-in away from the pipe wall

r = 0.5 - 0.5 = 0

\tau = \frac{\delta P *r}{2L}  = \frac{86.4 *0}{2*12} =0

3 0
3 years ago
What is the difference between weight and mass? Give an example of how they are different.
marusya05 [52]
Mass is the amount of matter it has, while weight <span>is a measurement of the force placed on an object by gravity. An example of how they are different is that mass is always constant while weight varies depending on the location.</span>
8 0
3 years ago
According to Newton's third law of motion, if you push against a wall, the wall will __________.
beks73 [17]
It would be C as the law says "<span>Formally stated, </span>Newton's third law<span> is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object."</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • How does energy move predictably between a lien water in the air above it
    10·1 answer
  • Based on the map, which region of the United States has the driest climate?
    15·2 answers
  • Molecules of two solid substances actually collide with each other to transfer energy in this method of heat transfer.
    11·2 answers
  • Mr. Fineman rolls a tennis ball off his desk. If his desk is 1 m tall, and the tennis ball is rolling off of his desk at a speed
    6·1 answer
  • A student walks to the right 25-m along the 800 hall in 15-s. They turn around and walk 15-m to the left in 8.0-s. Calculate the
    10·1 answer
  • Suppose that instead of dropping the rock you throw it downwards so that its speed after falling 7 meters is 23.43 m/s. How much
    9·2 answers
  • 7. Which of the following statements concerning a short in a series circuit is true?
    12·1 answer
  • Half of the moon is always illuminated by the sun. Given that this is true, then what causes the moon to change phases throughou
    13·1 answer
  • Starting at (0,0) an object travels 36 meters north and then it covers 20 meters east. What is
    8·1 answer
  • Consider a uniformly charged sphere of total charge Q and radius R centered at the origin. We want to find the electric field in
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!